Graphical Modeling of High-Dimensional Functional Data: Separability Structures and Unified Methodology under General Observational Designs

高维函数数据的图形建模:一般观测设计下的可分离结构和统一方法

基本信息

  • 批准号:
    2310943
  • 负责人:
  • 金额:
    $ 17.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

The statistical methodologies outlined in this project are motivated by the need to analyze multi-subject neuroimaging data sets as well as longitudinal observations from biomedical studies, among a variety of other examples. In many instances, it is of primary importance to discover interactions and dependencies between components of the data that are collected over time. In the case of neuroimaging data sets, these dependencies represent areas of the brain that coordinate during a specific task or share common features of baseline activity when the brain is at rest. This so-called functional brain connectome is known to be important biomarker for comparison across individuals or populations, provided that it can be reliably inferred from the data. The size of such data sets is typically very large, leading to practical issues in computation as well as theoretical ones related to quantifying uncertainty in outputs produced by the statistical analysis. The investigator will develop statistical methods, along with theoretical justifications and efficient computational packages, for estimating and interpreting functional connectivity networks and other large data sets of similar structure. Through both research and instructional activities, the investigator will educate and train students at both the undergraduate and graduate levels in the development and use of statistical tools related to the project aims.The data examples previously mentioned will be modeled as multivariate functional data (MFD), due to collection of multiple measurements at each time instant as well as the variability of these measurements across time. Most MFD methods, and the majority of existing computational tools for their analysis, simply apply univariate functional data methods to each component function separately, then combine the outputs for downstream analysis. Though simple, this approach ignores potentially valuable structures and properties that can be effectively harnessed in modeling and estimation. This is particularly the case for the graphical modeling of high-dimensional MFD that is the research focus of this project. The project aims to make foundational theoretical and algorithmic contributions to this nascent area of research by developing models and estimators that are flexible to different functional observation designs and manage the difficulties associated with the dual dimensionality problem of high-dimensional functional data, in which the large number of functions observed per subject is compounded with the intrinsically infinite dimension of each individual function. Specifically, the investigator will develop novel tools for a regularized inverse correlation operator estimator, underlying separability structures of the MFD, and a historical functional graphical model. The products of the project will be validated mathematically by deriving relevant statistical properties of the estimators and empirically through the analysis of real data sets.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目概述的统计方法的动机是需要分析多学科神经影像学数据集以及生物医学研究的纵向观察,以及各种其他例子。在许多情况下,发现随时间收集的数据组件之间的交互和依赖关系是非常重要的。在神经成像数据集的情况下,这些依赖关系代表了在特定任务中协调的大脑区域,或者在大脑休息时共享基线活动的共同特征。这种所谓的功能性脑连接组被认为是个体或群体之间比较的重要生物标志物,前提是它可以从数据中可靠地推断出来。这种数据集的规模通常非常大,导致计算中的实际问题以及与统计分析产生的输出中的不确定性量化有关的理论问题。研究者将开发统计方法,以及理论证明和有效的计算包,用于估计和解释功能连接网络和其他类似结构的大型数据集。通过研究和教学活动,研究者将教育和培训本科生和研究生开发和使用与项目目标相关的统计工具。前面提到的数据示例将建模为多变量功能数据(multivariate functional data, MFD),因为在每个时刻收集多个测量值以及这些测量值在时间上的可变性。大多数MFD方法,以及大多数现有的用于分析的计算工具,只是简单地将单变量函数数据方法分别应用于每个组成函数,然后将输出组合起来进行下游分析。虽然简单,但是这种方法忽略了可以在建模和评估中有效利用的潜在有价值的结构和属性。这对于高维MFD的图形化建模来说尤其如此,这也是本项目的研究重点。该项目旨在通过开发模型和估计器,为这一新兴研究领域做出基础理论和算法贡献,这些模型和估计器可以灵活地适应不同的功能观察设计,并管理与高维功能数据的二维问题相关的困难,其中每个主题观察到的大量功能与每个单个功能的内在无限维度相结合。具体来说,研究者将开发一种新的工具,用于正则化逆相关算子估计,MFD的潜在可分性结构和历史功能图形模型。项目的产品将通过推导估算器的相关统计属性和通过实际数据集的分析进行数学验证。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Petersen其他文献

Distributional data analysis of accelerometer data from the NHANES database using nonparametric survey regression models
使用非参数调查回归模型对来自 NHANES 数据库的加速度计数据进行分布数据分析
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Matabuena;Alexander Petersen
  • 通讯作者:
    Alexander Petersen
Family‐wise error rate control in Gaussian graphical model selection via distributionally robust optimization
通过分布鲁棒优化进行高斯图模型选择中的族错误率控制
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Chau Tran;Pedro Cisneros;Sang;Alexander Petersen
  • 通讯作者:
    Alexander Petersen
2nd Special issue on Functional Data Analysis
第二期函数数据分析特刊
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    F. Ferraty;A. Kneip;P. Kokoszka;Alexander Petersen
  • 通讯作者:
    Alexander Petersen
Distributional data analysis with accelerometer data in a NHANES database with nonparametric survey regression models
使用 NHANES 数据库中的加速度计数据和非参数调查回归模型进行分布数据分析
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Matabuena;Alexander Petersen
  • 通讯作者:
    Alexander Petersen
Fréchet single index models for object response regression
用于对象响应回归的 Fréchet 单索引模型
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    A. Ghosal;W. Meiring;Alexander Petersen
  • 通讯作者:
    Alexander Petersen

Alexander Petersen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Petersen', 18)}}的其他基金

CRCNS US-French Research Proposal: Advanced Spatiotemporal Statistical Models for Quantification and Estimation of Functional Connectivity: Q-FunC
CRCNS 美法研究提案:用于功能连通性量化和估计的高级时空统计模型:Q-FunC
  • 批准号:
    2011715
  • 财政年份:
    2021
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Standard Grant
Statistical Modelling of Multivariate Functional and Distributional Data
多元函数和分布数据的统计建模
  • 批准号:
    2128589
  • 财政年份:
    2021
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Standard Grant
CRCNS US-French Research Proposal: Advanced Spatiotemporal Statistical Models for Quantification and Estimation of Functional Connectivity: Q-FunC
CRCNS 美法研究提案:用于功能连通性量化和估计的高级时空统计模型:Q-FunC
  • 批准号:
    2135859
  • 财政年份:
    2021
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Standard Grant
Statistical Modelling of Multivariate Functional and Distributional Data
多元函数和分布数据的统计建模
  • 批准号:
    1811888
  • 财政年份:
    2018
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Standard Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Three-Dimensional Numerical Modeling of Sprite Streamers
雪碧流光的三维数值建模
  • 批准号:
    2247153
  • 财政年份:
    2023
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Standard Grant
Multicomponent Modeling of High-Dimensional Multiparametric MRI Data
高维多参数 MRI 数据的多分量建模
  • 批准号:
    10861533
  • 财政年份:
    2023
  • 资助金额:
    $ 17.89万
  • 项目类别:
CAS: Collaborative Research: Design, Characterization, and Modeling of Metal Nanocluster Electrocatalysts Linked to Three-Dimensional Graphene
CAS:合作研究:与三维石墨烯相关的金属纳米团簇电催化剂的设计、表征和建模
  • 批准号:
    2247574
  • 财政年份:
    2023
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Standard Grant
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
  • 批准号:
    10568797
  • 财政年份:
    2023
  • 资助金额:
    $ 17.89万
  • 项目类别:
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Standard Grant
CAREER: A Multi-dimensional Study of Electromagnetic Interference in Wide Bandgap Power Electronics: Modeling, Estimation, and Mitigation
职业:宽带隙电力电子中电磁干扰的多维研究:建模、估计和缓解
  • 批准号:
    2236846
  • 财政年份:
    2023
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Design, Characterization, and Modeling of Metal Nanocluster Electrocatalysts Linked to Three-Dimensional Graphene
CAS:合作研究:与三维石墨烯相关的金属纳米团簇电催化剂的设计、表征和建模
  • 批准号:
    2247575
  • 财政年份:
    2023
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Standard Grant
Advances in High-dimensional Time Series Modeling and Its Interface with Deep Learning
高维时间序列建模及其与深度学习接口的进展
  • 批准号:
    2311178
  • 财政年份:
    2023
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Continuing Grant
Modeling and Optimal Inference in change-point models with ultra-high dimensional data
超高维数据变点模型的建模和优化推理
  • 批准号:
    RGPIN-2019-04464
  • 财政年份:
    2022
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
  • 批准号:
    2210282
  • 财政年份:
    2022
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了