Vehicular Traffic Modeling and Control in Mixed Manual and Automated Environments
混合手动和自动环境中的车辆交通建模和控制
基本信息
- 批准号:1536599
- 负责人:
- 金额:$ 39.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cutting-edge vehicle technologies such as Connected Vehicles and Automated Vehicles present unprecedented opportunities to drastically improve traffic operations and safety. These technologies can fundamentally change driver interactions and have enormous potential to remedy traffic phenomena known to be detrimental to traffic efficiency and stability. Among different types of Automated Vehicles technologies, Cooperative Adaptive Cruise Control is particularly advantageous due to its unique ability to foster high performance, doubling (or more) roadway capacity and significantly improving flow stability. This research project seeks to shed light on the traffic congestion mechanisms in mixed streams of manual and high performance automated vehicles. It also aims to develop mitigation strategies to reduce traffic congestion by unprecedented levels, contributing to the nation's economic competitiveness and sustainable urban development. This project will engage in a range of integrated research, educational and outreach activities that will expand the knowledge obtained from this research to a broader audience. The activities include (i) developing simulation-based educational modules, (ii) disseminating results using driving simulator, and (iii) engaging undergraduate and graduate students in the research and education.Traffic breakdown (onset of wide-spread congestion) is often triggered at freeway bottlenecks near merges and weaves. This phenomenon is characterized by high flow prior to breakdown, succeeded by a significant reduction in bottleneck discharge rate (known as "capacity drop"). The objectives of this research are to: (1) shed light on the behavioral mechanisms underlying traffic breakdown at bottlenecks in mixed manual and Cooperative Adaptive Cruise Control enabled vehicular environments and (2) develop theoretically-grounded control strategies to mitigate traffic breakdown and capacity drop. To better understand these mechanisms and enable vehicle-based control, this research will perform multi-scale analysis and modeling by linking microscopic features (driver characteristics, lane changes) to mesoscopic features (vehicle platooning) and eventually to macroscopic features (breakdown flow). This research will push the frontier of traffic flow research in the era of automated vehicles. Results from this research will advance our knowledge of congestion mechanisms, particularly around extended merge and weave bottlenecks. Moreover, control strategies will be developed based on the fundamental understanding of driving behavior to effectively mitigate traffic breakdown via vehicle-based control. Both proactive and reactive strategies will be developed at different levels of sophistication to enable implementation of robust control for select automation levels.
互联汽车和自动驾驶汽车等尖端汽车技术为大幅改善交通运营和安全提供了前所未有的机会。这些技术可以从根本上改变驾驶员的互动,并具有巨大的潜力来纠正已知对交通效率和稳定性有害的交通现象。在不同类型的自动驾驶汽车技术中,协同自适应巡航控制由于其独特的能力而具有特别的优势,可以提高高性能,使道路容量增加一倍(或更多),并显着提高流动稳定性。该研究项目旨在阐明手动和高性能自动化车辆混合流中的交通拥堵机制。它还旨在制定缓解战略,以前所未有的水平减少交通拥堵,为国家的经济竞争力和可持续城市发展做出贡献。该项目将开展一系列综合研究、教育和外联活动,将从这一研究中获得的知识传播给更广泛的受众。这些活动包括(i)开发基于模拟的教育模块,(ii)使用驾驶模拟器传播结果,以及(iii)让本科生和研究生参与研究和教育。交通中断(大范围拥堵的开始)经常在高速公路瓶颈附近的合并和交织处触发。这种现象的特征在于故障前的高流量,随后是瓶颈放电率的显著降低(称为“容量下降”)。本研究的目标是:(1)阐明在混合手动和协同自适应巡航控制启用车辆环境中的瓶颈处的交通故障的行为机制,以及(2)开发理论基础的控制策略,以减轻交通故障和容量下降。为了更好地理解这些机制并实现基于车辆的控制,本研究将通过将微观特征(驾驶员特征,车道变化)与中观特征(车辆排队)并最终与宏观特征(故障流)联系起来进行多尺度分析和建模。这项研究将推动自动驾驶汽车时代交通流研究的前沿。这项研究的结果将推进我们的拥塞机制的知识,特别是围绕扩展合并和编织瓶颈。此外,控制策略将基于对驾驶行为的基本理解来开发,以通过基于车辆的控制来有效地减轻交通中断。将在不同的复杂程度上开发主动和被动策略,以实现对选定自动化级别的鲁棒控制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soyoung Ahn其他文献
A Deep Long Short-Term Memory Network Embedded Model Predictive Control Strategies for Car-Following Control of Connected Automated Vehicles in Mixed Traffic
混合交通中联网自动车辆跟车控制的深度长短期记忆网络嵌入式模型预测控制策略
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yang Zhou;Zhen Zhang;Fan Ding;Soyoung Ahn;Keshu Wu;Bin Ran - 通讯作者:
Bin Ran
Electric bicycles sharing: opportunities and environmental impacts
电动自行车共享:机遇和环境影响
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Wissam Kontar;Soyoung Ahn;A. Hicks - 通讯作者:
A. Hicks
Human-automated vehicle interactions: Voluntary driver intervention in car-following
人机交互车辆:在跟车过程中驾驶员的自愿干预
- DOI:
10.1016/j.trc.2024.104969 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:7.900
- 作者:
Xinzhi Zhong;Yang Zhou;Amudha Varshini Kamaraj;Zhenhao Zhou;Wissam Kontar;Dan Negrut;John D. Lee;Soyoung Ahn - 通讯作者:
Soyoung Ahn
Evaluating the Benefits of a System-Wide Adaptive Ramp-Metering Strategy in Portland , Oregon
评估俄勒冈州波特兰市全系统自适应斜坡计量策略的效益
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Soyoung Ahn - 通讯作者:
Soyoung Ahn
A Generic Stochastic Hybrid Car-following Model Based on Approximate Bayesian Computation
基于近似贝叶斯计算的通用随机混合跟车模型
- DOI:
10.48550/arxiv.2312.10042 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jiwan Jiang;Yang Zhou;Xin Wang;Soyoung Ahn - 通讯作者:
Soyoung Ahn
Soyoung Ahn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Soyoung Ahn', 18)}}的其他基金
Understanding and Harnessing Traffic Fundamental Diagram in the Era of Connected Automated Vehicles
理解和利用互联自动驾驶汽车时代的交通基本图
- 批准号:
2129765 - 财政年份:2022
- 资助金额:
$ 39.39万 - 项目类别:
Standard Grant
CPS: TTP Option: Medium: Identifying, Characterizing, and Shaping Multi-Scale Cyber-Human Interactions in Mixed Autonomous/Conventional Vehicle Traffic
CPS:TTP 选项:中:识别、表征和塑造混合自主/传统车辆交通中的多尺度网络人机交互
- 批准号:
1739869 - 财政年份:2019
- 资助金额:
$ 39.39万 - 项目类别:
Continuing Grant
Collaborative Research: Mixed Traffic Dynamics Under Disturbances: Impact of Multi-Class Connected and Automated Vehicles
合作研究:干扰下的混合交通动态:多类互联和自动驾驶车辆的影响
- 批准号:
1932932 - 财政年份:2019
- 资助金额:
$ 39.39万 - 项目类别:
Standard Grant
CAREER: Dynamic State Transitions in Vehicular Traffic and the Effects of Driver Behavior
职业:车辆交通的动态状态转换和驾驶员行为的影响
- 批准号:
1439795 - 财政年份:2013
- 资助金额:
$ 39.39万 - 项目类别:
Standard Grant
CAREER: Dynamic State Transitions in Vehicular Traffic and the Effects of Driver Behavior
职业:车辆交通的动态状态转换和驾驶员行为的影响
- 批准号:
1150137 - 财政年份:2012
- 资助金额:
$ 39.39万 - 项目类别:
Standard Grant
Collaborative Research: Analysis and Modeling of Traffic Instabilities in Congested Traffic
协作研究:拥堵交通中的交通不稳定分析与建模
- 批准号:
0856699 - 财政年份:2009
- 资助金额:
$ 39.39万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Data-driven Multiscale Modeling of Complex Traffic Systems Utilizing Networked Driving Simulators
职业:利用网络驾驶模拟器对复杂交通系统进行数据驱动的多尺度建模
- 批准号:
2238359 - 财政年份:2023
- 资助金额:
$ 39.39万 - 项目类别:
Standard Grant
CC* Integration-Small: Integrating Application Agnostic Learning with FABRIC for Enabling Realistic High-Fidelity Traffic Generation and Modeling
CC* Integration-Small:将应用程序无关学习与 FABRIC 集成,以实现现实的高保真流量生成和建模
- 批准号:
2419070 - 财政年份:2023
- 资助金额:
$ 39.39万 - 项目类别:
Standard Grant
CAREER: Conflicting Traffic Streams with Mixed Traffic: Modeling and Control
职业:冲突交通流与混合交通:建模和控制
- 批准号:
2401555 - 财政年份:2023
- 资助金额:
$ 39.39万 - 项目类别:
Standard Grant
A new approach for traffic data management and modeling that combines storage efficiency and immediate knowledge extraction
一种结合存储效率和即时知识提取的交通数据管理和建模新方法
- 批准号:
23K17800 - 财政年份:2023
- 资助金额:
$ 39.39万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: SaTC: CORE: Small: Privately Collecting and Analyzing V2X Data for Urban Traffic Modeling
合作研究:SaTC:核心:小型:私下收集和分析用于城市交通建模的 V2X 数据
- 批准号:
2302689 - 财政年份:2022
- 资助金额:
$ 39.39万 - 项目类别:
Standard Grant
Integrated Modeling and Optimization of Urban Land Use and Dynamic Traffic Network Equilibrium
城市土地利用与动态交通网络均衡综合建模与优化
- 批准号:
22K04575 - 财政年份:2022
- 资助金额:
$ 39.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Traffic safety margin inference via machine learning for 3D spatial modeling
通过 3D 空间建模的机器学习进行交通安全裕度推断
- 批准号:
572807-2022 - 财政年份:2022
- 资助金额:
$ 39.39万 - 项目类别:
Alliance Grants
CAREER: Physics Regularized Machine Learning Theory: Modeling Stochastic Traffic Flow Patterns for Smart Mobility Systems
职业:物理正则化机器学习理论:为智能移动系统建模随机交通流模式
- 批准号:
2234289 - 财政年份:2022
- 资助金额:
$ 39.39万 - 项目类别:
Standard Grant
Multi-Agent Modeling, Simulation & Analysis of Mixed Vehicular Traffic of Autonomous & Human Driven Vehicles and of Spread of Epidemics & their Mitigation Strategies
多智能体建模、仿真
- 批准号:
RGPIN-2021-03281 - 财政年份:2022
- 资助金额:
$ 39.39万 - 项目类别:
Discovery Grants Program - Individual
Connected Vehicle Based Traffic Dynamic Modeling and Proactive Freeway Control to Improve Mobility
基于联网车辆的交通动态建模和主动高速公路控制以提高移动性
- 批准号:
RGPIN-2016-06754 - 财政年份:2021
- 资助金额:
$ 39.39万 - 项目类别:
Discovery Grants Program - Individual