Investigating the Mechanics of Cell Division with A Side-View Atomic Force Microscope
用侧视原子力显微镜研究细胞分裂的机制
基本信息
- 批准号:1536736
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cell division is essential for life; it underlies the development of humans from embryo to full-grown adult, as well as regenerative processes such as wound healing and pathologies such as cancer. While cell division is an inherently mechanical process, its physical nature is poorly understood. This fundamental research will use a device called an "atomic force microscope" (AFM) to measure the small forces created by a cell and the stiffness changes of the cell during division into two cells. In addition, the AFM will be used to measure how the division of cells is changed by application of force. As cell division is an essential process in biology, the results of this work will contribute to understanding development and growth of organisms, tissue development, tissue regeneration, and cancer. The interdisciplinary approach taken in this research, involving the application of cutting edge techniques in engineering to the study of cell biology, will have a positive impact on the education of engineers and biologists including those from underrepresented groups. In addition, the novel measurement device built during the project will remain as a resource for future research by the current team and their colleagues.In tissues, cell division is physically restricted in all dimensions by neighboring cells and extracellular matrix. Dividing cells must be able to generate significant forces in a spatially and temporally coordinated manner to create the morphological changes accompanying cell division, and in some contexts must do this while experiencing physiological forces. How cells generate and respond to such forces remains unclear, as cell division has been primarily studied in cells cultured on flat petri dish surfaces. The objective of this project is to elucidate how cells generate and respond to forces, and alter their structural properties, during cell division. We will construct and use a high-resolution side-view imaging atomic force microscope to directly measure forces generated by cells during each stage of cell division while simultaneously imaging the dynamic cytoskeletal and chromosomal rearrangements in dividing cells in epi-fluorescence along a plane perpendicular to the sample surface. With this tool, we aim to address the following important questions regarding the mechanics of cell division: (1) What are the forces generated by cells following during cell division and how are they generated?; (2) How do the viscoelastic properties of cells change during each stage of cell division?; and finally (3) what is the effect of applied force on cell division?
细胞分裂对生命至关重要;它是人类从胚胎发育到成年的基础,也是创伤愈合等再生过程和癌症等病理过程的基础。虽然细胞分裂是一个内在的机械过程,但人们对其物理性质知之甚少。这项基础研究将使用一种名为“原子力显微镜”(AFM)的装置来测量一个细胞产生的微小作用力,以及细胞分裂成两个细胞过程中的硬度变化。此外,原子力显微镜将被用来测量细胞分裂是如何通过施加力量而改变的。由于细胞分裂是生物学中的一个基本过程,这项工作的结果将有助于理解生物体的发育和生长、组织发育、组织再生和癌症。这项研究中采用的跨学科方法,包括将工程学的尖端技术应用于细胞生物学研究,将对工程师和生物学家的教育产生积极影响,包括那些来自代表性不足群体的人。此外,在项目期间建造的新型测量设备将作为当前团队及其同事未来研究的资源。在组织中,细胞分裂在所有维度上都受到邻近细胞和细胞外基质的物理限制。细胞分裂必须能够以空间和时间协调的方式产生显著的力,以创造伴随细胞分裂的形态变化,在某些情况下,必须在经历生理力的同时做到这一点。细胞如何产生并对这种力量做出反应尚不清楚,因为细胞分裂主要是在培养在平坦的培养皿表面的细胞中进行的。这个项目的目标是阐明细胞在细胞分裂过程中如何产生和对力做出反应,并改变它们的结构属性。我们将建造并使用高分辨率侧视成像原子力显微镜来直接测量细胞在细胞分裂的每个阶段产生的力,同时沿着垂直于样品表面的平面在外向荧光中成像细胞分裂中的动态细胞骨架和染色体重排。通过这个工具,我们旨在解决关于细胞分裂机制的以下重要问题:(1)细胞在细胞分裂过程中所产生的力是什么?它们是如何产生的?(2)细胞在细胞分裂的每个阶段中,细胞的粘弹性性质是如何变化的?(3)外力对细胞分裂的影响是什么?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ovijit Chaudhuri其他文献
Bioinks with varying densities of physical and chemical crosslinks modulate cellular responses in 3D by altering the viscoelasticity of the cell microenvironment
具有不同物理和化学交联密度的生物墨水通过改变细胞微环境的粘弹性来调节三维环境中的细胞反应
- DOI:
10.1016/j.mattod.2025.03.019 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:22.000
- 作者:
Luís B. Bebiano;Rafaela Presa;Luís Fernandes;Bianca N. Lourenço;Ovijit Chaudhuri;Rúben F. Pereira - 通讯作者:
Rúben F. Pereira
Cell–extracellular matrix mechanotransduction in 3D
三维细胞-细胞外基质机械转导
- DOI:
10.1038/s41580-023-00583-1 - 发表时间:
2023-02-27 - 期刊:
- 影响因子:90.200
- 作者:
Aashrith Saraswathibhatla;Dhiraj Indana;Ovijit Chaudhuri - 通讯作者:
Ovijit Chaudhuri
Hydrogels for Local and Sustained Delivery of Bacteriophages to Treat Multidrug-Resistant Wound Infections
用于局部持续递送噬菌体以治疗多重耐药伤口感染的水凝胶
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yung;Tejas Dharmaraj;Qingquan Chen;Arne Echterhof;Robert Manasherob;Lucy Jia Zheng;Cas de Leeuw;Nana Ansuah Peterson;Whitney Stannard;Zhiwei Li;Maryam Hajfathalian;Aviv Hargil;Hunter A. Martinez;Tony Hong Wei Chang;Francis B. Blankenberg;Derek Amanatullah;Ovijit Chaudhuri;Paul Bollyky - 通讯作者:
Paul Bollyky
Substrate stress relaxation mediates the transition between sub-diffusive and super-diffusive migration
- DOI:
10.1016/j.bpj.2023.11.2488 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Vivek Sharma;Omkolade Adebowale;Ze Gong;Ovijit Chaudhuri;Vivek B. Shenoy - 通讯作者:
Vivek B. Shenoy
Getting physical: Material mechanics is an intrinsic cell cue
身体力行:材料力学是一种内在的细胞线索
- DOI:
10.1016/j.stem.2023.05.003 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:20.400
- 作者:
Hamza Atcha;Yu Suk Choi;Ovijit Chaudhuri;Adam J. Engler - 通讯作者:
Adam J. Engler
Ovijit Chaudhuri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ovijit Chaudhuri', 18)}}的其他基金
Impact of Matrix Viscoelasticity on Induced Pluripotent Stem Cell Morphogenesis
基质粘弹性对诱导多能干细胞形态发生的影响
- 批准号:
2148041 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Regulation of Stem Cell Migration by Extracellular Matrix Plasticity
职业:细胞外基质可塑性对干细胞迁移的调节
- 批准号:
1846367 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Conference: New Advances in Probing Cell-Extracellular Matrix Interactions; Berlin, Germany; October 21 - 22, 2016
会议:探测细胞-细胞外基质相互作用的新进展;
- 批准号:
1630448 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Control of endothelial cell mechanics and blood vessel remodeling by blood flow
通过血流控制内皮细胞力学和血管重塑
- 批准号:
23K23887 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Forces in Nature: Tissue mechanics and cell sociology
自然力量:组织力学和细胞社会学
- 批准号:
FL230100100 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Australian Laureate Fellowships
Implications of cancer cell mechanics in evasion of cellular phagocytosis
癌细胞力学在逃避细胞吞噬作用中的意义
- 批准号:
495533 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
21ENGBIO A versatile optogenetic toolbox to control cell mechanics for cell and tissue morphogenesis
21ENGBIO 多功能光遗传学工具箱,用于控制细胞和组织形态发生的细胞力学
- 批准号:
BB/W011123/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Research Grant
The role of cell surface mechanics in activating the mechanosensitive ion channel Piezo1
细胞表面力学在激活机械敏感离子通道 Piezo1 中的作用
- 批准号:
BB/X015831/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Dynamic Microcages for Cells: Advanced Tools to Interrogate Cell Mechanics
细胞动态微笼:研究细胞力学的高级工具
- 批准号:
DP230101614 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Discovery Projects
The mechanics of host cell repopulation of engineered tissues
工程组织的宿主细胞再生机制
- 批准号:
10580269 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Cyclic stretch of bicuspid aortic valves: elucidating its implications for cell signaling and tissue mechanics.
二叶式主动脉瓣的循环拉伸:阐明其对细胞信号传导和组织力学的影响。
- 批准号:
10607130 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
In situ and real-time readout of nuclear mechanotransduction via single cell mechanics and site-specific fluorescence reporting
通过单细胞力学和位点特异性荧光报告原位实时读出核力转导
- 批准号:
10745440 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Squeezing through the embryo:Dissecting nuclear mechanics during embryonic cell migration
挤压胚胎:剖析胚胎细胞迁移过程中的核力学
- 批准号:
BB/W017482/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Research Grant














{{item.name}}会员




