Towards Analysis and Control of Dynamic Brain States

走向动态大脑状态的分析和控制

基本信息

  • 批准号:
    1537015
  • 负责人:
  • 金额:
    $ 37.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

The study of neural coding asks how the brain converts raw signals into usable information that allows us to see, hear and think. Studying the mechanisms of neural coding is a persistent scientific challenge that has important implications for uncovering the workings of the brain. This award supports fundamental research that will enable a new approach to studying neural coding from the perspective of engineering theory. This perspective recognizes that networks in the brain can be modeled in terms of their physics and, thus, studied using many of the same tools that are used to study complex engineered systems such as aircraft and power grids. However, the brain possesses a level of complexity that far exceeds those of typical engineered systems and, consequently, existing engineering approaches must be adapted and augmented to meet biological realities. By addressing these gaps, this research will lead to new methods in engineering, advances in neural technology, and new ways of studying human brain function. This research is highly multi-disciplinary, involving systems engineering, mathematics and neuroscience. As part of the award, several new initiatives will be pursued to facilitate dialogue across these disciplines and to foster increased participation of underrepresented groups in engineering and science through the establishment of summer research internships for local high school students.This award approaches neuronal networks through the lens of dynamical systems and control theory. This approach is based on the premise that understanding the input-output relationships of neuronal networks, mediated by their dynamics, will shed new light on fundamental questions in neuroscience, including the link between neural dynamics and information processing. In pursuit of this goal, the award focusses on two main objectives: First, neuroscientifically-motivated adaptions of systems theoretic properties, such as reachability, will be formulated so as to understand how dynamics govern neural input-output relationships. Since the connections in brain networks constantly adapt, emphasis will be placed on the notion of a brain state, which characterizes both the activity and the network structure at a given time. Second, control methods will be developed for the modulation of such states. To do so, a new class of objective functions will be defined in terms of the systems-theoretic properties conferred by the network. For example, such objectives will involve using controls to expand a network's reachable space, rather than just controlling its activity. The control input in this context may be quite general, and several specific scenarios, including neurostimulation, will be studied.
神经编码研究的问题是,大脑如何将原始信号转化为可用的信息,使我们能够看、听和思考。研究神经编码的机制是一项持久的科学挑战,对揭示大脑的运作具有重要意义。该奖项支持从工程理论角度研究神经编码的新方法的基础研究。这种观点认为,大脑中的网络可以根据其物理原理进行建模,因此,可以使用许多用于研究复杂工程系统(如飞机和电网)的相同工具进行研究。然而,大脑的复杂性远远超过了那些典型的工程系统,因此,现有的工程方法必须适应和增强,以满足生物学的现实。通过解决这些差距,这项研究将导致工程上的新方法,神经技术的进步,以及研究人类大脑功能的新方法。这项研究是高度跨学科的,涉及系统工程、数学和神经科学。作为该奖项的一部分,将推行几项新举措,以促进这些学科之间的对话,并通过为当地高中生建立暑期研究实习机会,促进代表性不足的群体更多地参与工程和科学。该奖项通过动态系统和控制理论的视角来研究神经网络。这种方法是基于这样一个前提,即理解神经网络的输入输出关系,由其动态调节,将为神经科学的基本问题提供新的思路,包括神经动力学和信息处理之间的联系。为了实现这一目标,该奖项集中在两个主要目标上:首先,将制定神经科学驱动的系统理论性质(如可达性)的适应,以便了解动态如何控制神经输入-输出关系。由于大脑网络中的连接不断适应,因此重点将放在大脑状态的概念上,它表征了给定时间内的活动和网络结构。其次,将开发用于调制这些状态的控制方法。为此,将根据网络赋予的系统理论性质定义一类新的目标函数。例如,这样的目标将涉及使用控件来扩展网络的可达空间,而不仅仅是控制其活动。在这种情况下,控制输入可能是相当普遍的,并且将研究几个特定的场景,包括神经刺激。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ShiNung Ching其他文献

Representation Learning for Context-Dependent Decision-Making
用于上下文相关决策的表示学习
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuzhen Qin;Tommaso Menara;Samet Oymak;ShiNung Ching;F. Pasqualetti
  • 通讯作者:
    F. Pasqualetti
Spectral Unmixing of Classes of Arbitrary Nonsingular Matrices
  • DOI:
    10.1016/s1474-6670(17)30446-9
  • 发表时间:
    2004-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    ShiNung Ching;Edward J. Davison
  • 通讯作者:
    Edward J. Davison
Quasilinear Control Theory: An Overview
拟线性控制理论:概述
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    ShiNung Ching;Y. Eun;P. Kabamba;S. Meerkov
  • 通讯作者:
    S. Meerkov
Node selection for probing connections in evoked dynamic networks
诱发动态网络中探测连接的节点选择
  • DOI:
    10.1109/cdc.2014.7040341
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohammadmehdi Kafashan;K. Lepage;ShiNung Ching
  • 通讯作者:
    ShiNung Ching
Estimating uncertainty from feed-forward network based sensing using quasi-linear approximation
使用准线性近似从基于前馈网络的感知中估计不确定性
  • DOI:
    10.1016/j.neunet.2025.107376
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Songhan Zhang;Matthew Singh;Delsin Menolascino;ShiNung Ching
  • 通讯作者:
    ShiNung Ching

ShiNung Ching的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ShiNung Ching', 18)}}的其他基金

NCS-FO: Modeling Individual Differences in Cognitive Control as Variation in Neural Activation Trajectories
NCS-FO:将认知控制的个体差异建模为神经激活轨迹的变化
  • 批准号:
    1835209
  • 财政年份:
    2018
  • 资助金额:
    $ 37.46万
  • 项目类别:
    Standard Grant
CRCNS Research Proposal: Collaborative Research: Studying Competitive Neural Network Dynamics Elicited By Attractive and Aversive Stimuli and their Mixtures
CRCNS 研究提案:合作研究:研究由吸引和厌恶刺激及其混合引起的竞争性神经网络动力学
  • 批准号:
    1724218
  • 财政年份:
    2017
  • 资助金额:
    $ 37.46万
  • 项目类别:
    Continuing Grant
CAREER: System Theoretic Methods for Understanding the Dynamics of Cognition
职业:理解认知动态的系统理论方法
  • 批准号:
    1653589
  • 财政年份:
    2017
  • 资助金额:
    $ 37.46万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
  • 批准号:
    2405662
  • 财政年份:
    2024
  • 资助金额:
    $ 37.46万
  • 项目类别:
    Standard Grant
Analysis and quality control of novel mixed cell population for therapeutic development
用于治疗开发的新型混合细胞群的分析和质量控制
  • 批准号:
    10089851
  • 财政年份:
    2024
  • 资助金额:
    $ 37.46万
  • 项目类别:
    Collaborative R&D
Interdisciplinary analysis of drug use and its state control in Indonesia
印度尼西亚毒品使用及其国家控制的跨学科分析
  • 批准号:
    23K25093
  • 财政年份:
    2024
  • 资助金额:
    $ 37.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Computation-efficient Algorithms for Grid-scale Energy Storage Control, Bidding, and Integration Analysis
职业:用于电网规模储能控制、竞价和集成分析的计算高效算法
  • 批准号:
    2239046
  • 财政年份:
    2023
  • 资助金额:
    $ 37.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: Analysis and Control in Multi-Scale Interface Coupling between Deformable Porous Media and Lumped Hydraulic Circuits
合作研究:可变形多孔介质与集总液压回路多尺度界面耦合分析与控制
  • 批准号:
    2327640
  • 财政年份:
    2023
  • 资助金额:
    $ 37.46万
  • 项目类别:
    Standard Grant
Challenge to control environmental microorganisms based on analysis of dissolved organic matter in water
基于水中溶解有机物分析控制环境微生物的挑战
  • 批准号:
    23K17329
  • 财政年份:
    2023
  • 资助金额:
    $ 37.46万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Comprehensive Harmonization and Analysis of Case/Control Whole Genome Sequencing Data from the ALS/FTD Compute Project
来自 ALS/FTD 计算项目的病例/对照全基因组测序数据的全面协调和分析
  • 批准号:
    10592917
  • 财政年份:
    2023
  • 资助金额:
    $ 37.46万
  • 项目类别:
Towards a neurobiology of "oromanual" motor control: behavioral analysis and neural mechanisms
走向“手动”运动控制的神经生物学:行为分析和神经机制
  • 批准号:
    10819032
  • 财政年份:
    2023
  • 资助金额:
    $ 37.46万
  • 项目类别:
Functional analysis of bone macrophages that control bone metabolism for the development of therapeutic drugs for osteoporosis.
控制骨代谢的骨巨噬细胞的功能分析,用于开发骨质疏松症治疗药物。
  • 批准号:
    23H03025
  • 财政年份:
    2023
  • 资助金额:
    $ 37.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of the brain GLP-1 circuitry at cellular level to characterise its roles in the control of food intake
在细胞水平上分析大脑 GLP-1 回路,以表征其在控制食物摄入中的作用
  • 批准号:
    MR/X003604/1
  • 财政年份:
    2023
  • 资助金额:
    $ 37.46万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了