CAREER: Statistical Mechanics of Cellular Structures
职业:细胞结构的统计力学
基本信息
- 批准号:2046683
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis CAREER award supports theoretical and computational research integrated with education to gain a unified understanding of the physical properties of cellular materials. From honeycombs to foams to biological cells, materials with cellular structures are ubiquitous in nature. To advance understanding of cellular materials, the PI will use an interdisciplinary approach that combines knowledge and techniques from physics, geometry, and biology.Organ surfaces are covered with dense layers of cells, acting as physical barriers. While normally non-migratory, cells can undergo active rearrangements during basic processes such as embryo development, morphogenesis, repair, and remodeling. In these events, the cell layer transitions from a solid-like state to a fluid-like state. This striking transition is traditionally studied in the context of cells on a flat surface. However, most organ surfaces are naturally non-flat, and comprised of curved surfaces such as spheres, saddles, or cylinders. How surface curvature affects cell motion remains largely unknown. To address these questions, the principal investigator will study how cells move collectively on a curved surface and the role of curvature on whether they behave like a solid or a fluid. These investigations will generate predictions that can be tested experimentally in living embryos and lab-cultured tissues.The knowledge gained from biological tissues will serve as an inspiration for the PI to investigate the origin of rigidity in other cellular structures. These include the meshwork of forces in a solid or a mechanical network constructed by randomly connecting springs. The goal is to develop design principles for cellular structures to exhibit unusual mechanical properties and take advantage of them to design functional materials that do not readily occur in nature.This CAREER award also supports educational activities tightly integrated with the research. The goal is to increase diversity and retention of students taking physics classes for the very first time, whether in high school or college. The PI will collaborate with K-12 STEM educators to design unconventional yet accessible teaching modules for introductory physics classes. The modules will be based on biophysics, epidemiology, and biology while drawing connections to the fundamental physical concepts taught in introductory physics. These modules, which differ greatly from conventional "textbook examples", will provide students an eye-opening experience on the applicability and impact of physics concepts.TECHNICAL SUMMARYThis CAREER award supports integrated theoretical and computational research, outreach, and education with the aim to advance the fundamental understanding of the statistical mechanics and collective behavior of cellular materials, including biological tissues, foams, granular packings, and their force networks.In the biological context, the project will investigate the nature of the jamming/unjamming transition in multicellular collectives constrained on a curved surface and elucidate the origin of coherent angular motion that arises as a unique consequence of non-zero Gaussian curvature. In non-biological cellular structures, the PI will investigate the consequence of mechanical dualities. The objective will involve deriving an effective Hamiltonian in the force space for disordered granular solids based on the dual correspondence between self-stress states and floppy modes. The framework will be the basis for exploring the force-network ensemble of disordered grain packings. The PI proposes to leverage the duality of self-stresses and floppy modes to design disordered mechanical metamaterials with phononic bandgaps.This CAREER award also supports educational activities tightly integrated with the research. The goal is to increase diversity and retention of students taking physics classes for the very first time, whether in high school or college. The PI will collaborate with K-12 STEM educators to design unconventional yet accessible teaching modules for introductory physics classes. The modules will be based on biophysics, epidemiology, and biology while drawing connections to the fundamental physical concepts taught in introductory physics. These modules, which differ greatly from conventional "textbook examples", will provide students an eye-opening experience on the applicability and impact of physics concepts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性总结该职业奖支持理论和计算研究与教育相结合,以获得对蜂窝材料物理特性的统一理解。从蜂窝到泡沫再到生物细胞,具有细胞结构的材料在自然界中无处不在。为了促进对细胞材料的理解,PI将使用跨学科的方法,结合物理学,几何学和生物学的知识和技术。器官表面覆盖着致密的细胞层,充当物理屏障。虽然通常不迁移,但细胞可以在基本过程中进行主动重排,如胚胎发育,形态发生,修复和重塑。在这些事件中,细胞层从固体状状态转变为流体状状态。传统上,这种引人注目的转变是在平面上的细胞背景下研究的。然而,大多数器官表面是天然非平坦的,并且由诸如球体、鞍形或圆柱体的弯曲表面组成。表面曲率如何影响细胞运动在很大程度上仍然是未知的。为了解决这些问题,首席研究员将研究细胞如何在曲面上集体移动,以及曲率对它们表现得像固体还是流体的作用。这些研究将产生可以在活胚胎和实验室培养的组织中进行实验测试的预测。从生物组织中获得的知识将为PI研究其他细胞结构中刚性的起源提供灵感。这些包括在固体中的力的网络或由随机连接的弹簧构成的机械网络。其目标是开发细胞结构的设计原理,以展示不寻常的机械性能,并利用它们来设计自然界中不容易出现的功能材料。该CAREER奖还支持与研究紧密结合的教育活动。 其目标是增加学生的多样性和保留第一次参加物理课,无论是在高中或大学。PI将与K-12 STEM教育工作者合作,为入门物理课程设计非传统但可访问的教学模块。这些模块将以生物物理学,流行病学和生物学为基础,同时与入门物理学中教授的基本物理概念建立联系。这些模块与传统的“教科书范例”有很大的不同,将为学生提供一个关于物理概念的适用性和影响力的大开眼界的体验。技术总结该职业奖支持综合理论和计算研究,推广和教育,旨在促进对统计力学和细胞材料(包括生物组织,泡沫,在生物学方面,该项目将研究约束在曲面上的多细胞集体中的干扰/非干扰过渡的性质,并阐明作为非零高斯曲率的独特后果而产生的相干角运动的起源。在非生物细胞结构中,PI将研究机械对偶的后果。我们的目标是基于自应力状态和松弛模式之间的对偶对应关系,推导出无序颗粒固体在力空间中的有效哈密顿量。该框架将是探索无序颗粒堆积的力网络系综的基础。PI提出利用自应力和松弛模式的双重性来设计具有声子带隙的无序机械超材料。该CAREER奖还支持与研究紧密结合的教育活动。 其目标是增加学生的多样性和保留第一次参加物理课,无论是在高中或大学。PI将与K-12 STEM教育工作者合作,为入门物理课程设计非传统但可访问的教学模块。这些模块将以生物物理学,流行病学和生物学为基础,同时与入门物理学中教授的基本物理概念建立联系。这些模块与传统的“教科书范例”有很大的不同,将为学生提供一个关于物理概念的适用性和影响力的大开眼界的体验。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响力审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Collective curvature sensing and fluidity in three-dimensional multicellular systems
- DOI:10.1038/s41567-022-01747-0
- 发表时间:2022-10
- 期刊:
- 影响因子:19.6
- 作者:Wen-Lang Tang;Amit Das;A. Pegoraro;Y. Han;Jessie Huang;David A. Roberts;Haiqian Yang;J. Fredberg;D. Kotton;Dapeng Bi;Ming Guo
- 通讯作者:Wen-Lang Tang;Amit Das;A. Pegoraro;Y. Han;Jessie Huang;David A. Roberts;Haiqian Yang;J. Fredberg;D. Kotton;Dapeng Bi;Ming Guo
Controlled Neighbor Exchanges Drive Glassy Behavior, Intermittency, and Cell Streaming in Epithelial Tissues
- DOI:10.1103/physrevx.11.041037
- 发表时间:2021-11-22
- 期刊:
- 影响因子:12.5
- 作者:Das, Amit;Sastry, Srikanth;Bi, Dapeng
- 通讯作者:Bi, Dapeng
Rigid tumours contain soft cancer cells
- DOI:10.1038/s41567-022-01755-0
- 发表时间:2022-09-29
- 期刊:
- 影响因子:19.6
- 作者:Fuhs, Thomas;Wetzel, Franziska;Kaes, Josef A.
- 通讯作者:Kaes, Josef A.
Configurational fingerprints of multicellular living systems
多细胞生命系统的构型指纹
- DOI:10.1073/pnas.2109168118
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Yang, Haiqian;Pegoraro, Adrian F.;Han, Yulong;Tang, Wenhui;Abeyaratne, Rohan;Bi, Dapeng;Guo, Ming
- 通讯作者:Guo, Ming
Discontinuous Shear Thickening in Biological Tissue Rheology
- DOI:10.1103/physrevx.14.011027
- 发表时间:2024-02-22
- 期刊:
- 影响因子:12.5
- 作者:Hertaeg,Michael J.;Fielding,Suzanne M.;Bi,Dapeng
- 通讯作者:Bi,Dapeng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAPENG BI其他文献
DAPENG BI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Probability and Mathematical Statistical Mechanics
职业:概率和数学统计力学
- 批准号:
2238423 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Statistical mechanics and knot theory in algebraic combinatorics
职业:代数组合中的统计力学和纽结理论
- 批准号:
2046915 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Statistical Mechanics of Slender Structures
职业:细长结构的统计力学
- 批准号:
1752100 - 财政年份:2018
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Research and training in advanced computational methods for quantum and statistical mechanics
职业:量子和统计力学高级计算方法的研究和培训
- 批准号:
1454939 - 财政年份:2015
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Halting Problems In Statistical Mechanics
职业:解决统计力学中的问题
- 批准号:
1455272 - 财政年份:2015
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Statistical mechanics of superconductors and other macroscopic phenomena
职业:超导体和其他宏观现象的统计力学
- 批准号:
1254791 - 财政年份:2013
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Designing quantum computers and understanding glassy systems using numerical simulations and statistical mechanics
职业:使用数值模拟和统计力学设计量子计算机并理解玻璃系统
- 批准号:
1151387 - 财政年份:2012
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: The Statistical Mechanics of Filamentous Assemblies
职业:丝状组件的统计力学
- 批准号:
0955760 - 财政年份:2010
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Dynamics and Statistical Mechanics of Multicomponent Quantum Fluids
职业:多组分量子流体的动力学和统计力学
- 批准号:
0846788 - 财政年份:2009
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CAREER: Statistical Mechanics of Particulate Systems Far from Equilibrium
职业:远离平衡的颗粒系统的统计力学
- 批准号:
0239504 - 财政年份:2003
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant