Affect-Based Video Retrieval
基于情感的视频检索
基本信息
- 批准号:1539012
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops advanced machine learning and computer vision technologies for affect-based video retrieval to retrieve videos according to their emotional content. Introducing such a personal touch into video retrieval can improve user's interaction experiences with videos by allowing user to retrieve and organize videos based on their specific emotional needs. In addition, the project also has impacts on a wide range of fields including advertisement and education, allowing the video creators such as advertisers, and educators to effectively customize the videos to best serve the users' emotional needs. The project also contributes to education and student training. The project is integrated with education by (a) introducing a course on computer vision for affective computing; (b) involving undergraduate and graduate students in this project, especially those from under-represented groups; and (c) organizing workshops and tutorials in major computer vision and affective computing conferences on topics related to this research for further dissemination of the research ideas and results.This research addresses problems in video affective content analysis. Affect-based video retrieval faces two major challenges. First, there exists a significant semantic gap between the low level video features and the high level affective content of the video. Second, due to the subjective nature of user's perception of emotion, user's emotional responses to videos vary significantly with people. For the first challenge, the PI develops a novel generative deep model to automatically learn an affect-sensitive multi-modal middle level video representation from the raw video data. To further improve the characterization of the video's affective content, the PI augments it with semantic video attributes derived from well-established video production knowledge to produce a hybrid multi-modal middle level video representation. The hybrid multi-modal middle level representation can effectively bridge the gap between the raw video and its affective content. For the second challenge, the PI employs a multi-task deep learning method to tailor the middle level representation to each user's specific affective preferences in order to maximize their experience with videos.
该项目开发了先进的机器学习和计算机视觉技术,用于基于情感的视频检索,以根据情感内容检索视频。 将这样的个人触摸引入到视频检索中可以通过允许用户基于其特定的情感需求来检索和组织视频来改善用户与视频的交互体验。 此外,该项目还对包括广告和教育在内的广泛领域产生了影响,使广告商和教育工作者等视频创作者能够有效地定制视频,以最好地满足用户的情感需求。该项目还有助于教育和学生培训。 该项目通过以下方式与教育相结合:(a)开设一门关于情感计算的计算机视觉课程;(B)让本科生和研究生参与该项目,特别是那些来自代表性不足群体的学生;以及(c)在主要的计算机视觉和情感计算会议上组织与本研究相关主题的研讨会和教程,以进一步传播研究思想和成果。视频情感内容分析基于情感的视频检索面临两个主要挑战。首先,在低层视频特征和高层视频情感内容之间存在显著的语义鸿沟。其次,由于用户对情感感知的主观性,用户对视频的情感反应因人而异。对于第一个挑战,PI开发了一种新的生成式深度模型,以从原始视频数据中自动学习情感敏感的多模态中级视频表示。 为了进一步改善视频的情感内容的表征,PI用从完善的视频制作知识导出的语义视频属性对其进行增强,以产生混合多模态中间级视频表示。混合多模态中间层表示可以有效地弥合原始视频与其情感内容之间的差距。 对于第二个挑战,PI采用多任务深度学习方法来根据每个用户的特定情感偏好定制中间层表示,以最大限度地提高他们的视频体验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiang Ji其他文献
Oil financialisation and volatility forecast: Evidence from multidimensional predictors
石油金融化和波动性预测:来自多维预测的证据
- DOI:
10.1002/for.2577 - 发表时间:
2019-09 - 期刊:
- 影响因子:3.4
- 作者:
Yan-ran Ma;Qiang Ji;Jiaofeng Pan - 通讯作者:
Jiaofeng Pan
An ecological network analysis of the structure, development and sustainability of China’s natural gas supply system security
中国天然气供应体系安全结构、发展与可持续性的生态网络分析
- DOI:
10.1016/j.ecolind.2016.09.051 - 发表时间:
2017-02 - 期刊:
- 影响因子:6.9
- 作者:
Faheemullah Shaikh;Qiang Ji;Ying Fan - 通讯作者:
Ying Fan
Improving Face Recognition by Online Image Alignment
通过在线图像对齐改进人脸识别
- DOI:
10.1109/icpr.2006.701 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Peng Wang;Lam Cam Tran;Qiang Ji - 通讯作者:
Qiang Ji
Exploring Domain Knowledge for Facial Expression-Assisted Action Unit Activation Recognition
探索面部表情辅助动作单元激活识别的领域知识
- DOI:
10.1109/taffc.2018.2822303 - 发表时间:
2020-10 - 期刊:
- 影响因子:11.2
- 作者:
Shangfei Wang;Guozhu Peng;Qiang Ji - 通讯作者:
Qiang Ji
Forecasting portfolio variance: a new decomposition approach
预测投资组合方差:一种新的分解方法
- DOI:
10.1007/s10479-023-05546-5 - 发表时间:
2023 - 期刊:
- 影响因子:4.8
- 作者:
Bo Yu;Dayong Zhang;Qiang Ji - 通讯作者:
Qiang Ji
Qiang Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qiang Ji', 18)}}的其他基金
EAGER: Deep Causal Representation Learning for Generalizable Visual Understanding
EAGER:用于泛化视觉理解的深度因果表示学习
- 批准号:
2236026 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CI-SUSTAIN: Collaborative Research: Extending a Large Multimodal Corpus of Spontaneous Behavior for Automated Emotion Analysis
CI-SUSTAIN:协作研究:扩展自发行为的大型多模态语料库以进行自动情绪分析
- 批准号:
1629856 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
WORKSHOP: Doctoral Consortium at the IEEE ACII 2015 Conference
研讨会:IEEE ACII 2015 会议上的博士联盟
- 批准号:
1544421 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
EAGER: Combining Knowledge with Data for Generalizable and Robust Visual Learning
EAGER:将知识与数据相结合,实现可推广且稳健的视觉学习
- 批准号:
1145152 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Automated Alignment and Segmentation for Electron Tomography
电子断层扫描的自动对准和分割
- 批准号:
0241182 - 财政年份:2003
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
- 批准号:81900115
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
Reality-based Interaction用户界面模型和评估方法研究
- 批准号:61170182
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
- 批准号:30771013
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
- 批准号:30470665
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
- 批准号:60376005
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
- 批准号:
2405662 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
ViMuSe - a video-based AI music recommendation engine to improve creative efficiency and diversity.
ViMuSe - 基于视频的AI音乐推荐引擎,可提高创作效率和多样性。
- 批准号:
10104871 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Collaborative R&D
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
- 批准号:
2344795 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
- 批准号:
2344793 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
- 批准号:
2344790 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
- 批准号:
2344789 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
- 批准号:
2344791 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
- 批准号:
2344792 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
- 批准号:
2344794 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)