EAGER: Combining Knowledge with Data for Generalizable and Robust Visual Learning
EAGER:将知识与数据相结合,实现可推广且稳健的视觉学习
基本信息
- 批准号:1145152
- 负责人:
- 金额:$ 20.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2016-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computer vision has made tremendous progress in the past decades, partially enabled by the advanced machine learning techniques. But compared with human perception, computer vision remains primitive. One contributing factor for this is the data-driven nature of the current learning algorithms and their inability to incorporate any related knowledge. The data-driven methods tend to be database-specific and cannot generalize well to unseen data. This project addresses this issue through the introduction of a knowledge-augmented statistical learning framework. Within this framework, knowledge and data can be systematically exploited, captured, and are principally integrated to jointly train a vision algorithm. Developing such a framework, however, is challenging since the domain knowledge often exists in different and diverse formats, typically inaccessible to the data-driven statistical machine learning methods. To overcome this challenge, the research team systematically converts domain knowledge into either the constraints on the model or into pseudo-data, whereby they can be incorporated into the statistical learning methods. The project includes systematic identification of knowledge from different sources and concrete mechanisms to capture the knowledge and to convert them into formats easily accessible to the automatic machine learning methods. The project also involves demonstrating the effectiveness of the proposed framework for certain computer vision problems.The project provides the training for graduate and undergraduate students, and the research results are disseminated through publications and organization of the related workshops.
计算机视觉在过去几十年里取得了巨大的进步,部分原因是先进的机器学习技术。但与人类的感知相比,计算机视觉仍然很原始。造成这种情况的一个因素是当前学习算法的数据驱动性质,以及它们无法整合任何相关知识。数据驱动的方法往往是特定于数据库的,不能很好地泛化到不可见的数据。该项目通过引入知识增强的统计学习框架来解决这一问题。在这个框架内,知识和数据可以被系统地利用、捕获,并主要集成在一起,共同训练视觉算法。然而,开发这样一个框架是具有挑战性的,因为领域知识通常以不同的形式存在,通常无法使用数据驱动的统计机器学习方法。为了克服这一挑战,研究团队系统地将领域知识转换为模型上的约束或伪数据,以便将其纳入统计学习方法。该项目包括系统地识别来自不同来源的知识,以及捕获知识的具体机制,并将其转换为易于自动机器学习方法访问的格式。该项目还包括证明所提出的框架对某些计算机视觉问题的有效性。该项目为研究生和本科生提供培训,并通过出版物和组织相关讲习班传播研究成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiang Ji其他文献
Oil financialisation and volatility forecast: Evidence from multidimensional predictors
石油金融化和波动性预测:来自多维预测的证据
- DOI:
10.1002/for.2577 - 发表时间:
2019-09 - 期刊:
- 影响因子:3.4
- 作者:
Yan-ran Ma;Qiang Ji;Jiaofeng Pan - 通讯作者:
Jiaofeng Pan
An ecological network analysis of the structure, development and sustainability of China’s natural gas supply system security
中国天然气供应体系安全结构、发展与可持续性的生态网络分析
- DOI:
10.1016/j.ecolind.2016.09.051 - 发表时间:
2017-02 - 期刊:
- 影响因子:6.9
- 作者:
Faheemullah Shaikh;Qiang Ji;Ying Fan - 通讯作者:
Ying Fan
Improving Face Recognition by Online Image Alignment
通过在线图像对齐改进人脸识别
- DOI:
10.1109/icpr.2006.701 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Peng Wang;Lam Cam Tran;Qiang Ji - 通讯作者:
Qiang Ji
Exploring Domain Knowledge for Facial Expression-Assisted Action Unit Activation Recognition
探索面部表情辅助动作单元激活识别的领域知识
- DOI:
10.1109/taffc.2018.2822303 - 发表时间:
2020-10 - 期刊:
- 影响因子:11.2
- 作者:
Shangfei Wang;Guozhu Peng;Qiang Ji - 通讯作者:
Qiang Ji
Forecasting portfolio variance: a new decomposition approach
预测投资组合方差:一种新的分解方法
- DOI:
10.1007/s10479-023-05546-5 - 发表时间:
2023 - 期刊:
- 影响因子:4.8
- 作者:
Bo Yu;Dayong Zhang;Qiang Ji - 通讯作者:
Qiang Ji
Qiang Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qiang Ji', 18)}}的其他基金
EAGER: Deep Causal Representation Learning for Generalizable Visual Understanding
EAGER:用于泛化视觉理解的深度因果表示学习
- 批准号:
2236026 - 财政年份:2022
- 资助金额:
$ 20.24万 - 项目类别:
Standard Grant
CI-SUSTAIN: Collaborative Research: Extending a Large Multimodal Corpus of Spontaneous Behavior for Automated Emotion Analysis
CI-SUSTAIN:协作研究:扩展自发行为的大型多模态语料库以进行自动情绪分析
- 批准号:
1629856 - 财政年份:2016
- 资助金额:
$ 20.24万 - 项目类别:
Standard Grant
WORKSHOP: Doctoral Consortium at the IEEE ACII 2015 Conference
研讨会:IEEE ACII 2015 会议上的博士联盟
- 批准号:
1544421 - 财政年份:2015
- 资助金额:
$ 20.24万 - 项目类别:
Standard Grant
Automated Alignment and Segmentation for Electron Tomography
电子断层扫描的自动对准和分割
- 批准号:
0241182 - 财政年份:2003
- 资助金额:
$ 20.24万 - 项目类别:
Continuing Grant
相似海外基金
An Integrated Programming Learning Platform Combining Fine-Grained Learning Logs of Knowledge Acquisition and Exercises
知识获取与练习细粒度学习日志相结合的综合编程学习平台
- 批准号:
23K17016 - 财政年份:2023
- 资助金额:
$ 20.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Community-partnered research on subsistence char fisheries in the Arctic: combining traditional knowledge with novel molecular tools
北极自给炭鱼渔业的社区合作研究:将传统知识与新型分子工具相结合
- 批准号:
555832-2020 - 财政年份:2022
- 资助金额:
$ 20.24万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Discovering New Knowledge by Combining Symbolic Logic and Deep Learning
结合符号逻辑和深度学习发现新知识
- 批准号:
22K21302 - 财政年份:2022
- 资助金额:
$ 20.24万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Learning from incomplete data by combining physiological knowledge and machine learning
结合生理知识和机器学习从不完整数据中学习
- 批准号:
562032-2021 - 财政年份:2022
- 资助金额:
$ 20.24万 - 项目类别:
Alliance Grants
Combining Knowledge And Data Driven Approaches to Inverse Imaging Problems
结合知识和数据驱动的方法来解决逆向成像问题
- 批准号:
EP/V029428/1 - 财政年份:2021
- 资助金额:
$ 20.24万 - 项目类别:
Fellowship
Learning from incomplete data by combining physiological knowledge and machine learning
结合生理知识和机器学习从不完整数据中学习
- 批准号:
562032-2021 - 财政年份:2021
- 资助金额:
$ 20.24万 - 项目类别:
Alliance Grants
Community-partnered research on subsistence char fisheries in the Arctic: combining traditional knowledge with novel molecular tools
北极自给炭鱼渔业的社区合作研究:将传统知识与新型分子工具相结合
- 批准号:
555832-2020 - 财政年份:2021
- 资助金额:
$ 20.24万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Community-partnered research on subsistence char fisheries in the Arctic: combining traditional knowledge with novel molecular tools
北极自给炭鱼渔业的社区合作研究:将传统知识与新型分子工具相结合
- 批准号:
555832-2020 - 财政年份:2020
- 资助金额:
$ 20.24万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Combining Western Science and Traditional Ecological Knowledge to Accurately Reconstruct Historical Torngat Mountain Caribou
西方科学与传统生态知识相结合准确重建历史通加特山驯鹿
- 批准号:
552809-2020 - 财政年份:2020
- 资助金额:
$ 20.24万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
The Possibility of Combining Human Rights Theory and Scientific Knowledge Theory in Establishing Legal Rules for Medical Intervention-genome editing-for human embryos.
人权理论与科学知识理论相结合建立人类胚胎医学干预基因组编辑法律规则的可能性。
- 批准号:
20K20745 - 财政年份:2020
- 资助金额:
$ 20.24万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)