VEC: Medium: Large-Scale Visual Recognition: From Cloud Data Centers to Wearable Devices
VEC:中:大规模视觉识别:从云数据中心到可穿戴设备
基本信息
- 批准号:1539011
- 负责人:
- 金额:$ 96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advances in computer hardware and software promise to revolutionize the ways in which society interacts with visual information. However, visual recognition systems are limited by the lack of a practical means to classify the millions of concepts that arise in visual scenes and thus efficiently recognize when a small number of these concepts appear in a given scene. Furthermore, while real-time processing of visual data could significantly expand our perception of our surroundings, state-of-the-art vision systems cannot currently be implemented on wearable devices such as smartphones due to the limited heat dissipation (e.g., no fans or liquid cooling) and power such devices can provide. This research will overcome these challenges by developing artificial intelligence (AI) systems that efficiently manage the resources most crucial for high-performance wearable-based visual recognition, including the wearable device's real-time power consumption and computation. These systems will be empowered to initiate bursts of intense computation that are thermally managed by materials within the wearable device which are engineered to melt during heavy heating and solidify between bursts. Moreover, the AI systems will govern the communication between the device and external (cloud-based) computation resources as well as large-scale visual concept databases housed in data centers, thus providing extreme performance in a wearable form factor. Central concepts of this work will be integrated in undergraduate and graduate coursework, and a demonstration system will be made available to the research community and used in educational modules for high school students.This effort seeks to advance the core capabilities of large-scale visual recognition by co-designing visual models and computing infrastructure. The goal is to enable encyclopedic, real-time visual recognition through seamless integration of visual computing on wearable devices and in the cloud. The PIs envision a wearable visual recognition system that continuously captures live video input while providing intelligent, real-time assistance through automatic or on-demand visual recognition by means of a combination of computation at the device and offloading to the cloud. Such a system is not currently feasible due to a number of fundamental challenges. First, the severe energy and thermal constraints of wearable devices render them incapable of performing the intensive computation necessary for visual recognition. Second, it remains an open question how to support encyclopedic recognition in terms of both visual models and data center infrastructure. In particular, it remains unclear how current visual models, although highly successful at recognizing 1,000 object categories, can scale to millions or more distinct visual concepts. Moreover, such an encyclopedic visual model must be supported through data center infrastructure, but little progress has been made on how to build such infrastructure. This project addresses these fundamental challenges through an interdisciplinary approach integrating computer vision, hardware architecture, VLSI design, and heat transfer. The PIs will investigate three research thrusts. In Thrust 1, the PIs will develop a new type of deep neural networks that allow resource-efficient execution of modules. This new framework provide a unified way to design, learn, and run scalable visual models that can maximize the utility of recognition subject to resource constraints, such as latency, energy, or thermal dissipation of a wearable device. In Thrust 2, the PIs will design and fabricate a visual processing chip capable of computational sprinting (bursts of extreme computation well above steady-state thermal dissipation capabilities), leveraging the new framework developed in Thrust 1. In Thrust 3, the PIs will design datacenter infrastructure that supports large-scale hierarchical indexing of visual concepts for encyclopedic recognition, with a focus on latency, throughput, and energy efficiency. Finally, the PIs will build a demonstration system to evaluate the proposed algorithms, software, and hardware components and to assess the overall performance of an end-to-end system. The project web site (http://mivec.eecs.umich.edu/) will provide access to the results of this research including technical reports, datasets, and source code.
计算机硬件和软件的进步有望彻底改变社会与视觉信息交互的方式。然而,视觉识别系统受到限制,因为缺乏实用的方法来对视觉场景中出现的数百万个概念进行分类,从而有效地识别给定场景中出现的少量概念。此外,虽然视觉数据的实时处理可以显着扩展我们对周围环境的感知,但由于此类设备可提供的散热(例如,没有风扇或液体冷却)和电力有限,目前最先进的视觉系统无法在智能手机等可穿戴设备上实现。这项研究将通过开发人工智能(AI)系统来克服这些挑战,该系统可以有效管理对高性能可穿戴视觉识别最关键的资源,包括可穿戴设备的实时功耗和计算。这些系统将能够启动密集计算的爆发,这些计算由可穿戴设备内的材料进行热管理,这些材料被设计为在剧烈加热期间熔化并在爆发之间固化。此外,人工智能系统将管理设备与外部(基于云的)计算资源以及数据中心内的大规模视觉概念数据库之间的通信,从而以可穿戴的形式提供极致的性能。这项工作的核心概念将融入本科生和研究生课程,并向研究界提供演示系统,并用于高中生的教育模块。这项工作旨在通过共同设计视觉模型和计算基础设施来提高大规模视觉识别的核心能力。目标是通过可穿戴设备和云中视觉计算的无缝集成来实现百科全书式的实时视觉识别。 PI 设想了一种可穿戴视觉识别系统,该系统可以连续捕获实时视频输入,同时通过自动或按需视觉识别(通过设备计算和卸载到云端的组合)提供智能实时帮助。由于存在许多根本性挑战,这样的系统目前还不可行。首先,可穿戴设备严格的能量和热限制使其无法执行视觉识别所需的密集计算。其次,如何在视觉模型和数据中心基础设施方面支持百科全书式识别仍然是一个悬而未决的问题。特别是,目前的视觉模型虽然在识别 1000 个对象类别方面非常成功,但如何能够扩展到数百万或更多不同的视觉概念,目前仍不清楚。而且,这样一个百科全书式的视觉模型必须通过数据中心基础设施来支持,但在如何构建这样的基础设施方面却进展甚微。该项目通过集成计算机视觉、硬件架构、VLSI 设计和传热的跨学科方法来解决这些基本挑战。 PI 将调查三个研究重点。在 Thrust 1 中,PI 将开发一种新型深度神经网络,以实现模块的资源高效执行。这个新框架提供了一种统一的方式来设计、学习和运行可扩展的视觉模型,可以最大限度地提高受资源限制(例如可穿戴设备的延迟、能量或散热)的识别效用。在 Thrust 2 中,PI 将利用 Thrust 1 中开发的新框架,设计和制造能够进行计算冲刺(远高于稳态散热能力的极限计算爆发)的视觉处理芯片。在 Thrust 3 中,PI 将设计数据中心基础设施,支持用于百科全书式识别的视觉概念的大规模分层索引,重点关注延迟、吞吐量、 和能源效率。最后,PI 将构建一个演示系统来评估所提出的算法、软件和硬件组件,并评估端到端系统的整体性能。该项目网站 (http://mivec.eecs.umich.edu/) 将提供对这项研究结果的访问,包括技术报告、数据集和源代码。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Wenisch其他文献
Effect of system and operational parameters on the performance of an immersion-cooled multichip module for high performance computing
系统和运行参数对高性能计算浸没式冷却多芯片模块性能的影响
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Rui Zhang;Marc Hodes;Nathan Lower;Ross Wilcoxon;J. Gess;S. Bhavnani;Bharath Ramakrishnan;Wayne Johnson;D. Harris;R. Knight;Michael Hamilton;Charles Ellis;Ari Glezer;Arun Raghavan;Marios C Papaefthymiou;Thomas Wenisch;Milo Martin;Kevin Pipe - 通讯作者:
Kevin Pipe
Thomas Wenisch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Wenisch', 18)}}的其他基金
Collaborative Research: Architecture Support for Programming Languages and Operating Systems (ASPLOS) 2018 Student Travel Grant Proposal
协作研究:编程语言和操作系统的架构支持 (ASPLOS) 2018 年学生旅费资助提案
- 批准号:
1800771 - 财政年份:2018
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Ultra-Responsive Architectures for Mobile Platforms
SHF:中:协作研究:移动平台的超响应架构
- 批准号:
1623834 - 财政年份:2015
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
NSF Workshop on Sustainable Data Centers
NSF 可持续数据中心研讨会
- 批准号:
1523304 - 财政年份:2015
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
SHF: Small: Memory Persistency: programming paradigms for byte-addressable, non-volatile memories
SHF:小型:内存持久性:字节可寻址、非易失性内存的编程范例
- 批准号:
1525372 - 财政年份:2015
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
SHF: Medium: Collaborative Research: Advanced Architectures for Hand-held 3D Ultrasound
SHF:媒介:协作研究:手持式 3D 超声的先进架构
- 批准号:
1406739 - 财政年份:2014
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Ultra-Responsive Architectures for Mobile Plattorm
SHF:媒介:协作研究:移动平台的超响应架构
- 批准号:
1161505 - 财政年份:2012
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
SHF: Medium: Collaborative Research: Ultra-Responsive Architectures for Mobile Platforms
SHF:中:协作研究:移动平台的超响应架构
- 批准号:
1161681 - 财政年份:2012
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
CAREER: Programming Interfaces and Hardware Designs for a Polymorphic Multicore Cache Architecture
职业:多态多核缓存架构的编程接口和硬件设计
- 批准号:
0845157 - 财政年份:2009
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
CSR-DMSS,SM: Beyond Solid State Disks: Using FLASH to Save Energy in Enterprise Systems
CSR-DMSS,SM:超越固态硬盘:使用闪存在企业系统中节省能源
- 批准号:
0834403 - 财政年份:2008
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
CPA-CSA: Virtualization Mechanisms for Zero-Idle-Power and Thermally-Efficient Data Centers
CPA-CSA:零空闲功耗和热效率数据中心的虚拟化机制
- 批准号:
0811320 - 财政年份:2008
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Foundations of Anonymous Communication in Large-Scale Networks
合作研究:AF:媒介:大规模网络中匿名通信的基础
- 批准号:
2312241 - 财政年份:2023
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312711 - 财政年份:2023
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
Developing a new aspiration catheter solution for the treatment of large and medium vessel occlusions
开发用于治疗大中型血管闭塞的新型抽吸导管解决方案
- 批准号:
10699636 - 财政年份:2023
- 资助金额:
$ 96万 - 项目类别:
Collaborative Research: AF: Medium: Foundations of Anonymous Communication in Large-Scale Networks
合作研究:AF:媒介:大规模网络中匿名通信的基础
- 批准号:
2312242 - 财政年份:2023
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312710 - 财政年份:2023
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312709 - 财政年份:2023
- 资助金额:
$ 96万 - 项目类别:
Standard Grant














{{item.name}}会员




