Collaborative Research: Neural-cognitive analysis of spatial scenes with competing, dynamic sound sources
合作研究:对具有竞争性动态声源的空间场景进行神经认知分析
基本信息
- 批准号:1539376
- 负责人:
- 金额:$ 33.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates neurocognitive mechanisms that extract important information from a mixture of sound sources. Imagine a day where you could no longer distinguish the honking horn of a car coming right at you from other street sounds. This cognitive ability to attend to one sound source while ignoring others presents an everyday challenge for people with hearing impairments. While the basic neural mechanisms for detecting and localizing single sounds are known, we do not know how the brain accomplishes auditory scene analysis with multiple sound sources. So far, studies have focused on lower brain centers in rodents and carnivores, while the neural mechanisms for source segregation are expected to be at higher levels, in the auditory cortex. This study will record the responses of single cortical neurons and conduct human-subject experiments for the same acoustic scenarios. Based on the integration of these results, a functional auditory model will be developed. This will provide new scientific insights and enable intelligent algorithms for hearing aids, social robotics, and surveillance systems. The project will provide research opportunities for graduate and undergraduate students and include outreach activities and online learning resources for high-school and college students to increase the public awareness of neuroscience. The research results and the model will be shared with the academic community. This proposal will use an interdisciplinary approach to gain understanding of the central mechanisms of auditory scene analysis by integrating psychoacoustical experiments with single-unit electrophysiology. The study will investigate how the auditory system localizes a target sound temporally embedded in a spatially separated masker. Single-unit recording will target the caudal region of the auditory cortex, the putative "where" pathway for complex sound analysis. We hypothesize that cortical activity represents both the old and new sounds, so that the internal representation of the "old" masking source can be subtracted from the overall mixture. This facilitates a clearer perception of the "new" target element, demonstrating a fundamental psychophysical phenomenon within auditory scene analysis. To test this hypothesis, we will identify the neural signals for individual sound sources separately and in combination. We will then interpret these signals based on the perceptual data gained from sound localization tests with multiple moving and stationary sound sources. Discovering the fundamental brain mechanisms for auditory scene analysis will provide new neurophysiological insight into a well-established psychophysical field and offer potential technical solutions for sound-source segregation.
这个项目研究从混合声源中提取重要信息的神经认知机制。想象一下,有一天,你再也无法分辨正向你驶来的汽车的喇叭声和其他街道上的声音。这种专注于一个声源而忽略其他声源的认知能力对听力障碍者来说是一个日常挑战。虽然检测和定位单一声音的基本神经机制是已知的,但我们不知道大脑如何完成对多个声源的听觉场景分析。到目前为止,研究的重点是啮齿动物和食肉动物较低的大脑中心,而来源分离的神经机制预计将在较高水平上,即听觉皮质。这项研究将记录单个皮质神经元的反应,并在相同的声学场景下进行人体受试者实验。在综合这些结果的基础上,将开发一个功能听觉模型。这将为助听器、社交机器人和监控系统提供新的科学见解和智能算法。该项目将为研究生和本科生提供研究机会,并包括面向高中生和大学生的外联活动和在线学习资源,以提高公众对神经科学的认识。研究成果和模型将与学术界分享。这项建议将使用跨学科的方法,通过将心理声学实验与单一单位电生理学相结合来了解听觉场景分析的核心机制。这项研究将调查听觉系统如何定位时间上嵌入到空间分离的掩蔽物中的目标声音。单单元录音将以听觉皮质的尾部区域为目标,这是复杂声音分析的假定“位置”途径。我们假设皮层活动既代表旧的声音,也代表新的声音,因此可以从整体混合中减去“旧的”掩蔽源的内部表示。这有助于更清晰地感知“新的”目标元素,展示了听觉场景分析中的一种基本心理物理现象。为了验证这一假设,我们将分别和组合识别单个声源的神经信号。然后,我们将基于从多个运动和静止声源的声音定位测试中获得的感知数据来解释这些信号。发现听觉场景分析的基本大脑机制将为我们提供新的神经生理学洞察力,并为声源分离提供潜在的技术解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi Zhou其他文献
RNN-Based Sequence-Preserved Attention for Dependency Parsing
基于 RNN 的序列保留注意力依存解析
- DOI:
10.1609/aaai.v32i1.12011 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yi Zhou;Junying Zhou;Lu Liu;Jiangtao Feng;Haoyuan Peng;Xiaoqing Zheng - 通讯作者:
Xiaoqing Zheng
迷走神经背核NMDA受体依赖突触活动介导针刺足三里对胃运动的增强
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Qiwen Tan;Yi Zhou;Bing Zhu;Haifa Qiao - 通讯作者:
Haifa Qiao
Phylogenetic study of Ameiurus melas based on complete mitochondrial DNA sequence
基于完整线粒体DNA序列的黑腹鲫鱼系统发育研究
- DOI:
10.3109/19401736.2015.1106511 - 发表时间:
2016-11 - 期刊:
- 影响因子:0
- 作者:
Fan Yu;Juhua Yu;Yi Zhou;Jinpeng Yan;Yanhong Fang;Wenjun Wang;Zhong Yang - 通讯作者:
Zhong Yang
Inherent Oxygen Vacancies Boost Surface Reconstruction of Ultrathin Ni-Fe Layered-Double-Hydroxides toward Efficient Electrocatalytic Oxygen Evolution
固有氧空位促进超薄 Ni-Fe 层状双氢氧化物的表面重构,实现高效电催化析氧
- DOI:
10.1021/acssuschemeng.1c02256 - 发表时间:
2021-05 - 期刊:
- 影响因子:8.4
- 作者:
Yi Zhou;Wenbiao Zhang;Jialai Hu;Dan Li;Xing Yin;Qingsheng Gao - 通讯作者:
Qingsheng Gao
Identification of Flavonoid 3′-Hydroxylase Genes from Red Chinese Sand Pear (Pyrus pyrifolia Nakai) and Their Regulation of Anthocyanin Accumulation in Fruit Peel
红沙梨中黄酮3′-羟化酶基因的鉴定及其对果皮花色苷积累的调控
- DOI:
10.3390/horticulturae10060535 - 发表时间:
2024 - 期刊:
- 影响因子:3.1
- 作者:
Yi Zhou;Ruiyan Tao;J. Ni;Minjie Qian;Yuanwen Teng - 通讯作者:
Yuanwen Teng
Yi Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi Zhou', 18)}}的其他基金
CAREER: Reinforcement Learning-Based Control of Heterogeneous Multi-Agent Systems in Structured Environments: Algorithms and Complexity
职业:结构化环境中异构多智能体系统的基于强化学习的控制:算法和复杂性
- 批准号:
2237830 - 财政年份:2023
- 资助金额:
$ 33.78万 - 项目类别:
Continuing Grant
Collaborative Research: SCALE MoDL: Advancing Theoretical Minimax Deep Learning: Optimization, Resilience, and Interpretability
合作研究:SCALE MoDL:推进理论极小极大深度学习:优化、弹性和可解释性
- 批准号:
2134223 - 财政年份:2021
- 资助金额:
$ 33.78万 - 项目类别:
Continuing Grant
CIF: Small: Self-Adaptive Optimization Algorithms with Fast Convergence via Geometry-Adapted Hyper-Parameter Scheduling
CIF:小型:通过几何自适应超参数调度实现快速收敛的自适应优化算法
- 批准号:
2106216 - 财政年份:2021
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326895 - 财政年份:2023
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
- 批准号:
2311295 - 财政年份:2023
- 资助金额:
$ 33.78万 - 项目类别:
Continuing Grant














{{item.name}}会员




