CIF: Small: Self-Adaptive Optimization Algorithms with Fast Convergence via Geometry-Adapted Hyper-Parameter Scheduling
CIF:小型:通过几何自适应超参数调度实现快速收敛的自适应优化算法
基本信息
- 批准号:2106216
- 负责人:
- 金额:$ 41.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine-learning and artificial-intelligence techniques have been widely applied in modern society to enhance quality of lifr. In these applications, machine-learning models such as neural networks are trained on a large dataset using various optimization algorithms, which iteratively adjust the model parameters and converge to a good model. In particular, the convergence of these optimization algorithms often relies on choosing a good set of hyper-parameters. For example, one important algorithm hyper-parameter is the step size, which controls the scale of the update applied to the model parameters in every iteration, and it must be carefully chosen to avoid slow convergence and possible divergence. In practice, these algorithm hyper-parameters either are guided by optimization theory or are set through manual fine-tuning. While theory-guided algorithm hyper-parameters often rely on certain unknown geometrical information of the model and are often too conservative, resulting in result in slow convergence, manually fine-tuned algorithm hyper-parameters critically depend on the specific application and algorithm, and often introduce much computation overhead. This project aims to address these issues by developing a principled, computation-light and effective hyper-parameter scheduling scheme for different types of optimization algorithms to achieve fast and stable convergence. The developed adapted hyper-parameter scheduling scheme is intended to facilitate machine-learning practitioners tuning the algorithm hyper-parameters and dynamically adapt them to the ongoing optimization process. This has further positive impact on implementation of large-scale machine learning applications such as autonomous driving, training adversary-robust models, robust decision making in finance and control, etc. In this project, the researchers are developing a principled and efficient algorithm hyper-parameter scheduling framework that jointly adapts different algorithm hyper-parameters to the local geometry of the nonconvex objective function for a variety of popular optimization algorithms, and corroborate them with strong theoretical convergence guarantees in nonconvex machine learning. Specifically, the researchers are developing such geometry-adapted hyper-parameter scheduling scheme for deterministic optimization algorithms, including first-order gradient-based algorithms, accelerated gradient algorithms and second-order Newton-type algorithms. The researchers are developing new analysis tools that advance the understanding of the relation between hyper-parameters and the dynamic optimization process. Iteration and computation complexities of these algorithms is being established in nonconvex optimization. Based on this development, the researchers are extending the adapted hyper-parameter scheduling scheme to stochastic optimization algorithms, which use mini-batch random sampling and therefore necessitate a joint scheduling of step-size and batch size. Analysis of sample complexity and high probability convergence guarantee is being established for these algorithms. Furthermore, these developments are guiding the design of adapted hyper-parameter scheduling scheme for gradient-based minimax optimization algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习和人工智能技术已在现代社会中广泛应用,以提高LIFR的质量。在这些应用程序中,使用各种优化算法在大型数据集上对机器学习模型进行训练,该算法会迭代地调整模型参数并收敛到良好的模型。特别是,这些优化算法的收敛性通常依赖于选择一组良好的超参数。例如,一个重要的算法超参数是步长,它控制着在每次迭代中应用于模型参数的更新的尺度,并且必须仔细选择它以避免缓慢的收敛性和可能的差异。 在实践中,这些算法超参数要么以优化理论为指导,要么是通过手动微调设置的。尽管理论指导算法超参数通常依赖于模型的某些未知几何信息,并且通常过于保守,从而导致趋势缓慢,手动微调算法超参数严重取决于特定的应用和算法,并且通常会引入大量的计算。该项目旨在通过开发针对不同类型的优化算法的原则,计算和有效的超参数调度方案来解决这些问题,以实现快速和稳定的收敛性。开发的适应性参数调度方案旨在促进机器学习实践者调整算法超参数,并动态地使其适应持续的优化过程。这对实施大规模机器学习应用程序(例如自主驾驶,培训对手驾驶模型,财务和控制中的强大决策等)具有进一步的积极影响。在该项目中,研究人员正在开发一个有原则的,有效的算法超参数调度表调度框架,这些计划范围与非算法的范围不合格的范围的范围不同,该框架的范围是多种多样的范围,该算法的范围是多种多样的范围,该算法的范围是多种多样的范围,算法,并在非凸机机器学习中以强大的理论融合来证实它们。具体而言,研究人员正在开发用于确定性优化算法的几何适应性超参数调度方案,包括基于一阶梯度算法,加速梯度算法和二阶牛顿型算法。研究人员正在开发新的分析工具,以提高对超参数和动态优化过程之间关系的理解。这些算法的迭代和计算复杂性正在非convex优化中建立。基于此开发,研究人员将适应性的超参数调度方案扩展到随机优化算法,这些算法使用迷你批次随机抽样,因此需要对步进尺寸和批量尺寸进行联合调度。为这些算法建立了样本复杂性和高概率收敛保证的分析。此外,这些发展正在指导基于梯度的Minimax优化算法的适应性超参数调度方案。该奖项反映了NSF的法定任务,并被认为值得通过基金会的知识分子优点和更广泛的影响标准通过评估来进行评估。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sample Efficient Stochastic Policy Extragradient Algorithm for Zero-Sum Markov Game
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ziyi Chen;Shaocong Ma;Yi Zhou
- 通讯作者:Ziyi Chen;Shaocong Ma;Yi Zhou
Accelerated Proximal Alternating Gradient-Descent-Ascent for Nonconvex Minimax Machine Learning
- DOI:10.1109/isit50566.2022.9834691
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Ziyi Chen;Shaocong Ma;Yi Zhou
- 通讯作者:Ziyi Chen;Shaocong Ma;Yi Zhou
Greedy-GQ with Variance Reduction: Finite-time Analysis and Improved Complexity
- DOI:
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Shaocong Ma;Ziyi Chen;Yi Zhou;Shaofeng Zou
- 通讯作者:Shaocong Ma;Ziyi Chen;Yi Zhou;Shaofeng Zou
Proximal Gradient Descent-Ascent: Variable Convergence under KŁ Geometry
- DOI:
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:Ziyi Chen;Yi Zhou;Tengyu Xu;Yingbin Liang
- 通讯作者:Ziyi Chen;Yi Zhou;Tengyu Xu;Yingbin Liang
Sample and Communication-Efficient Decentralized Actor-Critic Algorithms with Finite-Time Analysis
- DOI:
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Ziyi Chen;Yi Zhou;Rongrong Chen;Shaofeng Zou
- 通讯作者:Ziyi Chen;Yi Zhou;Rongrong Chen;Shaofeng Zou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi Zhou其他文献
A New Sequential Block Partial Update Normalized Least Mean M-Estimate Algorithm and Its Convergence Performance Analysis
一种新的顺序块部分更新归一化最小均值M估计算法及其收敛性能分析
- DOI:
10.1109/isspit.2007.4458180 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
S. Chan;Yi Zhou;K. Ho - 通讯作者:
K. Ho
Superoscillation focusing with suppressed sidebands by destructive interference
通过相消干涉抑制边带的超振荡聚焦
- DOI:
10.1364/oe.474346 - 发表时间:
2022 - 期刊:
- 影响因子:3.8
- 作者:
Kun Zhang;Fengliang Dong;Shaokui Yan;Lihua Xu;Haifeng Hu;Zhiwei Song;Zhengguo Shang;Yi Zhou;Yufei Liu;Zhongquan Wen;Luru Dai;Weiguo Chu;Gang Chen - 通讯作者:
Gang Chen
Adsorptive removal of PPCPs from aqueous solution using carbon-based composites: A review
使用碳基复合材料吸附去除水溶液中的 PPCP:综述
- DOI:
10.1016/j.cclet.2021.09.029 - 发表时间:
2021-09 - 期刊:
- 影响因子:9.1
- 作者:
Tong Wang;Jie He;Yi Zhou;Jian Lu;Zhaohui Wang;Yanbo Zhou - 通讯作者:
Yanbo Zhou
Industrial policy and differentiated regional diversifications: Evidence from Chinese cities
产业政策与差异化区域多元化:来自中国城市的证据
- DOI:
10.1016/j.cities.2021.103348 - 发表时间:
2021-12 - 期刊:
- 影响因子:6.7
- 作者:
Yi Zhou;Chaoran Hu - 通讯作者:
Chaoran Hu
A study on operation control of urban centralized heating system based on cyber-physical systems
基于信息物理系统的城市集中供热系统运行控制研究
- DOI:
10.1016/j.energy.2019.116569 - 发表时间:
2020-01 - 期刊:
- 影响因子:9
- 作者:
Xiaojie Lin;Sibin Liu;Shuowei Lu;Zhongbo Li;Yi Zhou;Zitao Yu;Wei Zhong - 通讯作者:
Wei Zhong
Yi Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi Zhou', 18)}}的其他基金
CAREER: Reinforcement Learning-Based Control of Heterogeneous Multi-Agent Systems in Structured Environments: Algorithms and Complexity
职业:结构化环境中异构多智能体系统的基于强化学习的控制:算法和复杂性
- 批准号:
2237830 - 财政年份:2023
- 资助金额:
$ 41.12万 - 项目类别:
Continuing Grant
Collaborative Research: SCALE MoDL: Advancing Theoretical Minimax Deep Learning: Optimization, Resilience, and Interpretability
合作研究:SCALE MoDL:推进理论极小极大深度学习:优化、弹性和可解释性
- 批准号:
2134223 - 财政年份:2021
- 资助金额:
$ 41.12万 - 项目类别:
Continuing Grant
Collaborative Research: Neural-cognitive analysis of spatial scenes with competing, dynamic sound sources
合作研究:对具有竞争性动态声源的空间场景进行神经认知分析
- 批准号:
1539376 - 财政年份:2015
- 资助金额:
$ 41.12万 - 项目类别:
Standard Grant
相似国自然基金
靶向Treg-FOXP3小分子抑制剂的筛选及其在肺癌免疫治疗中的作用和机制研究
- 批准号:32370966
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
- 批准号:82304478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
- 批准号:82302422
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
- 批准号:82371712
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
- 批准号:32372613
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
NSF-BSF: CIF: Small: Self-adapting Code Generation in Rate-distortion Theory, Machine Learning, and Channel Coding
NSF-BSF:CIF:小型:率失真理论、机器学习和信道编码中的自适应代码生成
- 批准号:
1909423 - 财政年份:2019
- 资助金额:
$ 41.12万 - 项目类别:
Standard Grant
CIF: SMALL: Toward a Molecular Computer: Scaling up Programmable single-molecule Junctions Based on DNA self-assembly
CIF:小型:迈向分子计算机:基于 DNA 自组装扩展可编程单分子连接
- 批准号:
1814797 - 财政年份:2018
- 资助金额:
$ 41.12万 - 项目类别:
Standard Grant
CIF: Small: Self-Synthesizing Mixed-signal Circuits
CIF:小型:自合成混合信号电路
- 批准号:
1319592 - 财政年份:2013
- 资助金额:
$ 41.12万 - 项目类别:
Standard Grant
CIF: Small: Understanding Complexity in Markovian Interaction Networks: Self-Organization, Functional Stability, Robustness, and Evolutionary Behavior
CIF:小:理解马尔可夫交互网络的复杂性:自组织、功能稳定性、鲁棒性和进化行为
- 批准号:
1217213 - 财政年份:2012
- 资助金额:
$ 41.12万 - 项目类别:
Standard Grant
CIF: Small: Intervention: A Design Framework for Resource Sharing and Exchanges Among Self-interested Users
CIF:小:干预:利己用户之间资源共享和交流的设计框架
- 批准号:
1218136 - 财政年份:2012
- 资助金额:
$ 41.12万 - 项目类别:
Standard Grant