I-Corps: Implantable Brain-Computer Interface with Integrated Optics and Electrodes

I-Corps:具有集成光学器件和电极的植入式脑机接口

基本信息

项目摘要

The lack of a systematic theory of neural activity is complicated by the scale of the human brain, with an estimated 85 billion neurons, 100 trillion synapses, and 100 chemical neurotransmitters. Understanding what makes any one neuron fire or not is a central question in neuroscience and so the ideal sensing tool must span from the single neuron to its network of connections if we are to understand how that particular "cell type" assimilates information. Through recent advance in optogenetics, specific cell types can be activated and/or silenced by optical control using specific wavelengths to achieve high precision manipulation of cellular activity. Combined with an electrical recording system, an optogenetic probe can simultaneously stimulate and record from targeted neural population with high spatiotemporal resolution. In spite of recent rapid advances in optogenetics, supporting technologies to reliably deliver light to and record electrical signals from deep brain structures are not readily available. Early work involving in vivo optogenetics relied on the manual assembly of commercially available components such as microwires and optical fibers, which are not only bulky but can also experience large misalignments due to human error.This I-Corps team has developed the technical solutions to support optogenetic applications using advanced micro-fabrication techniques to monolithically integrate optical and electrical components into a compact MEMS probe. The technology allows for multiple micro-LEDs or waveguides to be precisely aligned on the same probe shank with the recording electrodes, obviating the need for hybrid processes to assemble components onto the probe shank. This, in turn, leads to increased scalability of the number of light sources per probe shank, minimized shank dimensions, and provides individual control of light sources for confined emission at cellular resolution and multiple locations. The probes the team has designed are practical to fabricate in bulk wafer processes with high yield and require minimal assembly effort. Excellent performance has been demonstrated in acute and chronic, behaving animal models through collaborations with several world-class neuroscience labs. The impact of this technology can be categorized by its utility in either research or clinical applications: to support optogenetic research where neuroscientists control cells through light to study brain functions; to better understand and to treat neurological diseases (Parkinson's, epilepsy, etc.), and to restore lost body functions (deafness, blindness, artificial limbs, etc.).
由于人类大脑的规模,缺乏神经活动的系统理论,估计有850亿个神经元,100万亿个突触和100种化学神经递质。了解是什么使任何一个神经元兴奋或不兴奋是神经科学的一个中心问题,因此,如果我们要了解特定的“细胞类型”如何吸收信息,理想的传感工具必须从单个神经元到其连接网络。通过光遗传学的最新进展,可以通过使用特定波长的光学控制来激活和/或沉默特定的细胞类型,以实现对细胞活性的高精度操纵。结合电记录系统,光遗传学探针可以同时刺激和记录目标神经群体,具有高时空分辨率。 尽管光遗传学最近取得了快速进展,但可靠地将光传递到大脑深部结构并记录来自大脑深部结构的电信号的支持技术还不容易获得。早期的体内光遗传学研究依赖于手工组装市售组件,如微丝和光纤,这些组件不仅体积庞大,而且可能会因人为错误而出现较大的错位。I-Corps团队开发了支持光遗传学应用的技术解决方案,使用先进的微制造技术将光学和电气组件单片集成到紧凑的MEMS探针中。该技术允许多个微发光二极管或波导与记录电极在同一探针柄上精确对准,从而避免了将组件组装到探针柄上的混合工艺的需要。这又导致每个探针柄的光源数量的增加的可缩放性、最小化的柄尺寸,并且提供用于在细胞分辨率和多个位置处的受限发射的光源的单独控制。该团队设计的探针在批量晶圆工艺中具有高产量,并且需要最少的组装工作。通过与几个世界级神经科学实验室的合作,在急性和慢性行为动物模型中表现出了出色的性能。 这项技术的影响可以根据其在研究或临床应用中的效用进行分类:支持光遗传学研究,神经科学家通过光控制细胞来研究大脑功能;更好地理解和治疗神经系统疾病(帕金森病,癫痫等),以及恢复丧失的身体功能(耳聋、失明、假肢等)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Euisik Yoon其他文献

State-of-the-art MEMS and microsystem tools for brain research
用于脑研究的最先进的微机电系统和微系统工具
  • DOI:
    10.1038/micronano.2016.66
  • 发表时间:
    2017-01-02
  • 期刊:
  • 影响因子:
    9.900
  • 作者:
    John P. Seymour;Fan Wu;Kensall D. Wise;Euisik Yoon
  • 通讯作者:
    Euisik Yoon
Cross-coupled differential oscillator MMICs with low phase-noise performance
具有低相位噪声性能的交叉耦合差分振荡器 MMIC
flexLiTE: flexible micro-LED integrated optoelectrodes for long-term chronic deep-brain studies
flexLiTE:用于长期慢性深脑研究的柔性 micro-LED 集成光电极
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eunah Ko;Jose Roberto Lopez Ruiz;M. Vöröslakos;Meng;György Buzsáki;Euisik Yoon
  • 通讯作者:
    Euisik Yoon
Fiberless multicolor optoelectrodes using Injection Laser Diodes and Gradient-index lens coupled optical waveguides
使用注入激光二极管和梯度折射率透镜耦合光波导的无纤维多色光电极

Euisik Yoon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Euisik Yoon', 18)}}的其他基金

NeuroNex Technology Hub: Multimodal Integrated Neural Technologies (MINT) - Connecting Physiology to Functional Mapping
NeuroNex 技术中心:多模态集成神经技术 (MINT) - 将生理学与功能映射联系起来
  • 批准号:
    1707316
  • 财政年份:
    2017
  • 资助金额:
    $ 5万
  • 项目类别:
    Cooperative Agreement
PIRE: International Program for the Advancement of Neurotechnology (IPAN)
PIRE:国际神经技术进步计划 (IPAN)
  • 批准号:
    1545858
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
I-Corps: High Throughput Single Cell Assay Platforms
I-Corps:高通量单细胞检测平台
  • 批准号:
    1439409
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
High-Density Neural Recording Arrays with Monolithically-Integrated Nanopillar LEDs for Multi-Wavelength Optical Stimulation
具有单片集成纳米柱 LED 的高密度神经记录阵列,用于多波长光学刺激
  • 批准号:
    1407977
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
GOALI: Heterogeneous 3D Integration of Electronic, Optical, and Structural Platform for Neural Microsystems
GOALI:神经微系统电子、光学和结构平台的异构 3D 集成
  • 批准号:
    1102067
  • 财政年份:
    2011
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
BioBolt: A Distributed Minimally-Invasive Neural Interface for Wireless Epidural Recording
BioBolt:用于无线硬膜外记录的分布式微创神经接口
  • 批准号:
    0925441
  • 财政年份:
    2009
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant

相似海外基金

Using implantable microdevices for deep phenotyping of multiple drug responses in brain tumor patients
使用植入式微型设备对脑肿瘤患者的多种药物反应进行深度表型分析
  • 批准号:
    10732396
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Implantable Neurostimulators for Control of Oscillatory Brain Networks
用于控制大脑振荡网络的植入式神经刺激器
  • 批准号:
    10227769
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
Development of the world's smallest needle-electrode based brain implantable electronics
开发出世界上最小的基于针电极的脑植入电子设备
  • 批准号:
    20H00244
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Blood-brain barrier disruption with implantable ultrasound to enhance paclitaxel delivery: A Phase 1-2 clinical trial in recurrent glioblastoma
通过植入式超声破坏血脑屏障以增强紫杉醇输送:复发性胶质母细胞瘤的 1-2 期临床试验
  • 批准号:
    10472056
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
Blood-brain barrier disruption with implantable ultrasound to enhance paclitaxel delivery: A Phase 1-2 clinical trial in recurrent glioblastoma
通过植入式超声破坏血脑屏障以增强紫杉醇输送:复发性胶质母细胞瘤的 1-2 期临床试验
  • 批准号:
    10683405
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
Implantable Neurostimulators for Control of Oscillatory Brain Networks
用于控制大脑振荡网络的植入式神经刺激器
  • 批准号:
    10426159
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
Implantable Neurostimulators for Control of Oscillatory Brain Networks
用于控制大脑振荡网络的植入式神经刺激器
  • 批准号:
    10650770
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
Blood-brain barrier disruption with implantable ultrasound to enhance paclitaxel delivery: A Phase 1-2 clinical trial in recurrent glioblastoma
通过植入式超声破坏血脑屏障以增强紫杉醇输送:复发性胶质母细胞瘤的 1-2 期临床试验
  • 批准号:
    10261586
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
Implantable Neurostimulators for Control of Oscillatory Brain Networks
用于控制大脑振荡网络的植入式神经刺激器
  • 批准号:
    10034533
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
Reanimating paralyzed hands using an implantable, brain-controlled functional electrical stimulation neuroprosthesis
使用可植入的、大脑控制的功能性电刺激神经假体使瘫痪的手复活
  • 批准号:
    9912637
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了