Reanimating paralyzed hands using an implantable, brain-controlled functional electrical stimulation neuroprosthesis
使用可植入的、大脑控制的功能性电刺激神经假体使瘫痪的手复活
基本信息
- 批准号:9912637
- 负责人:
- 金额:$ 3.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptionBladder ControlBrainCervicalClinical TrialsComplexComputersConsumptionCustomDataDependenceDevicesElectric StimulationElectrodesEpilepsyFingersForearmFreedomGoalsHandHand functionsHome environmentHumanImplantInternetIntuitionLaboratoriesLimb structureMethodsMicroelectrodesModernizationMonitorMonkeysMotorMotor CortexMovementMuscleNeurologicOutcomeParalysedPatientsPerformancePlantsPositioning AttributePower SourcesPreventionProsthesisQuadriplegiaQuality of lifeResearchResearch PersonnelSignal TransductionSpecificitySpeedSpinal cord injury patientsSurfaceSystemTechnologyTestingTimeTrainingTranslationsUniversitiesUtahWorkarmclinically translatablefeature extractionfinger movementfunctional electrical stimulationhand graspimprovedinfection riskinnovationneuroprosthesisneuroregulationneurotransmissionnonhuman primatenovelportabilityrelating to nervous systemtime use
项目摘要
Project Summary
The long-term goal of this study is to reanimate paralyzed hands using a fully implantable brain-controlled
functional electrical stimulation neuroprosthesis for spinal cord injured patients to use at any time. The overall
objective of this proposal, which is the next step toward attainment of the long-term goal, is to present an
implantable brain-controlled hand neuroprosthesis in non-human primates that returns function to paralyzed
musculature through electrical stimulation and does not sacrifice performance. Previous brain-controlled
functional electrical stimulation neuroprostheses required hundreds of wires connected to towers of computers
that consume power at rates unreasonable for portability to obtain the presented decode performance, rendering
usage of the neuroprostheses restricted to the laboratory (Bouton et al. 2016, Ajiboye et al. 2017). The central
hypothesis is that the 300-1,000 Hz spiking band power (SBP) feature will allow safely implantable power levels
while maintaining the decode performance of 30 kSps threshold crossings. The rationale of the proposed
research is that the 15x bandwidth reduction over conventional recording paradigms and single unit specificity
of SBP dramatically cut the power needed to extract features without any loss in single-unit performance. In the
first aim, a low-power multiple degree of freedom decoding method will be developed on an embedded platform.
Irwin et al. demonstrated that SBP can predict open-loop finger position with high performance (Irwin et al. 2016).
However, the monkey performed a single degree of freedom two target acquisition task. It remains unknown if
SBP will maintain high performance when decoding complex movements. Consequently, SBP will be used to
decode the more complicated center-out multiple finger task on the low-power embedded device presented in
Bullard, Nason et al. 2018 (in submission). It is hypothesized that SBP decoders will perform better than threshold
crossing decoders in closed-loop multiple finger tasks, even on the embedded device. The purpose of the second
aim is to investigate closed-loop functional electrical stimulation of hand muscles using the embedded neural
signal processor and the Networked Neuroprosthesis in a non-human primate. To date, the Networked
Neuroprosthesis developed at Case Western Reserve University has been unable to provide intuitive multiple
finger control to cervical level spinal cord injury patients. It is hypothesized that a brain interface is required to
make the Networked Neuroprosthesis intuitive, but there exists no fully implantable solution yet. The device from
the first aim will be used to present an implantable hand neuroprosthesis ready for human clinical trials. The
contribution of this work is expected to be an implantable, intuitive, brain-controlled functional electrical
stimulation hand neuroprosthesis to return some independence to spinal cord injured patients. This contribution
will be significant because it will provide a hand neuroprosthesis that patients can take home with them for full-
time use. The proposed research is innovative, in the opinion of the researchers, because it is the first system
capable of acquiring signals specific to single units using an order of magnitude less power than the standard.
项目概要
这项研究的长期目标是使用完全植入式大脑控制的设备来复活瘫痪的手
功能性电刺激神经假体供脊髓损伤患者随时使用。整体
该提案的目标是实现长期目标的下一步,即提出一个
植入式大脑控制的非人类灵长类手部神经假体可恢复瘫痪功能
通过电刺激来锻炼肌肉组织,并且不会牺牲性能。以前的大脑控制
功能性电刺激神经假体需要数百根电线连接到计算机塔
以不合理的速率消耗功率以获得所呈现的解码性能、渲染
神经假体的使用仅限于实验室(Bouton et al. 2016,Ajiboye et al. 2017)。中央
假设 300-1,000 Hz 尖峰频带功率 (SBP) 功能将允许安全植入的功率水平
同时保持 30 kSps 阈值交叉的解码性能。拟议的理由
研究表明,与传统记录范例相比,带宽减少了 15 倍,并且单个单元的特异性
SBP 极大地降低了提取特征所需的功耗,而不会损失单个单元的性能。在
第一个目标是在嵌入式平台上开发一种低功耗多自由度解码方法。
欧文等人。证明 SBP 可以高性能预测开环手指位置 (Irwin et al. 2016)。
然而,猴子执行的是单自由度两个目标获取任务。目前尚不清楚是否
SBP 在解码复杂动作时将保持高性能。因此,SBP 将用于
解码低功耗嵌入式设备上更复杂的中心向外多手指任务
布拉德、内森等人。 2018 年(提交中)。假设 SBP 解码器的性能优于阈值
即使在嵌入式设备上,也可以在闭环多手指任务中交叉解码器。第二个的目的
目的是研究使用嵌入式神经网络对手部肌肉进行闭环功能性电刺激
非人类灵长类动物的信号处理器和网络神经假体。迄今为止,网络化
凯斯西储大学开发的神经假体无法提供直观的多重功能
手指控制颈椎脊髓损伤患者。据推测,需要大脑接口
使网络神经假体变得直观,但目前还没有完全可植入的解决方案。该设备来自
第一个目标将用于提供可用于人体临床试验的可植入手部神经假体。这
这项工作的贡献预计将是一种可植入的、直观的、大脑控制的功能性电气
刺激手部神经假体,使脊髓损伤患者恢复一定的独立性。这个贡献
将会很重要,因为它将提供一种手部神经假体,患者可以将其带回家进行全面治疗。
时间利用。研究人员认为,所提出的研究具有创新性,因为它是第一个系统
能够使用比标准低一个数量级的功率采集特定于单个单元的信号。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Ross Nason-Tomaszewski其他文献
Samuel Ross Nason-Tomaszewski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel Ross Nason-Tomaszewski', 18)}}的其他基金
Restoring Dexterous Hand Function with Artificial Neural Network-Based Brain-Computer Interfaces
利用基于人工神经网络的脑机接口恢复灵巧手功能
- 批准号:
10680206 - 财政年份:2023
- 资助金额:
$ 3.94万 - 项目类别:
Reanimating paralyzed hands using an implantable, brain-controlled functional electrical stimulation neuroprosthesis
使用可植入的、大脑控制的功能性电刺激神经假体使瘫痪的手复活
- 批准号:
9760036 - 财政年份:2019
- 资助金额:
$ 3.94万 - 项目类别:
相似海外基金
Evolving the bionic bladder: supporting a sustainable transition to a next generation neurotechnology to restore bladder control following spinal cord injury
进化仿生膀胱:支持向下一代神经技术的可持续过渡,以恢复脊髓损伤后的膀胱控制
- 批准号:
53298 - 财政年份:2020
- 资助金额:
$ 3.94万 - 项目类别:
Study
Loss of Bladder Control Following Recurrent Infections
反复感染后膀胱失去控制
- 批准号:
10368136 - 财政年份:2020
- 资助金额:
$ 3.94万 - 项目类别:
Loss of Bladder Control Following Recurrent Infections
反复感染后膀胱失去控制
- 批准号:
10612716 - 财政年份:2020
- 资助金额:
$ 3.94万 - 项目类别:
Role of proNGF-p75 signaling in the bladder control after spinal cord injury
proNGF-p75 信号在脊髓损伤后膀胱控制中的作用
- 批准号:
10360573 - 财政年份:2019
- 资助金额:
$ 3.94万 - 项目类别:
Role of proNGF-p75 signaling in the bladder control after spinal cord injury
proNGF-p75 信号在脊髓损伤后膀胱控制中的作用
- 批准号:
10604309 - 财政年份:2019
- 资助金额:
$ 3.94万 - 项目类别:
Strategies to restore bladder control after peripheral nerve injury
周围神经损伤后恢复膀胱控制的策略
- 批准号:
nhmrc : 1022941 - 财政年份:2012
- 资助金额:
$ 3.94万 - 项目类别:
Project Grants
Micro-channel electrode neural interfaces: restoring bladder control
微通道电极神经接口:恢复膀胱控制
- 批准号:
EP/H00727X/1 - 财政年份:2009
- 资助金额:
$ 3.94万 - 项目类别:
Research Grant
Role of Brain in Bladder Control and Continence in Elderly Women
大脑在老年女性膀胱控制和节制中的作用
- 批准号:
7450261 - 财政年份:2008
- 资助金额:
$ 3.94万 - 项目类别:
Effects of bladder control medication on beta-amyloid peptide metabolism
膀胱控制药物对β-淀粉样肽代谢的影响
- 批准号:
8286950 - 财政年份:2008
- 资助金额:
$ 3.94万 - 项目类别:
Role of Brain in Bladder Control and Continence in Elderly Women
大脑在老年女性膀胱控制和节制中的作用
- 批准号:
7870338 - 财政年份:2008
- 资助金额:
$ 3.94万 - 项目类别: