SHINE: Accelerating the Turbulent Solar Wind: One Flux Tube at a Time

SHINE:加速湍流太阳风:一次一根通量管

基本信息

  • 批准号:
    1540094
  • 负责人:
  • 金额:
    $ 19.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-12-15 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

This three-year SHINE project aims to improve physical understanding of the origin of the turbulent solar wind. The hot, ionized outer atmosphere of the Sun is a unique laboratory for the study of magnetohydrodynamics (MHD) and plasma physics, with ranges of parameters that are inaccessible on the Earth. However, even after many years of investigation, the basic processes responsible for heating the million-degree solar corona and accelerating the solar wind are still not known. One primary reason for this lack of understanding is that the Sun's magnetic field is so topologically complex, with spatial and temporal scales that vary over many orders of magnitude. New observations are revealing heretofore unavailable details, so the related theoretical models must similarly improve in order to have any hope of providing deeper understanding of the physics. This project will use novel combinations of observations and theoretical models to put firm constraints on the connectivity between the rapidly evolving magnetic flux tubes in the solar corona and various types of MHD fluctuations that propagate through them into the heliosphere and dissipate to heat the plasma. The results of this research project will be published in widely available journals and presented at scientific conferences. In addition, the PI will continue developing software tools and databases to encourage and enable others in the solar-heliospheric community to make practical use of these research results. The research agenda of this project supports the Strategic Goals of the AGS Division in discovery, learning, diversity, and interdisciplinary research.
这个为期三年的SHARE项目旨在提高人们对湍急的太阳风起源的物理理解。太阳热的、电离的外层大气是研究磁流体动力学(MHD)和等离子体物理的独特实验室,其参数范围在地球上是无法获得的。然而,即使经过多年的研究,负责加热百万度太阳日冕和加速太阳风的基本过程仍然未知。缺乏了解的一个主要原因是太阳的磁场在拓扑上是如此复杂,其空间和时间尺度在许多数量级上都不同。新的观测揭示了迄今为止无法获得的细节,因此相关的理论模型必须同样得到改进,才有希望提供对物理学的更深层次的理解。该项目将使用新的观测和理论模型的组合,对日冕中快速演变的磁通量管和通过它们传播到日光层并消散以加热等离子体的各种MHD波动之间的连通性施加严格的限制。这一研究项目的成果将发表在广泛可获得的期刊上,并在科学会议上发表。此外,国际和平研究所将继续开发软件工具和数据库,以鼓励和使太阳-日球界的其他人能够实际利用这些研究成果。该项目的研究议程支持AGS司在发现、学习、多样性和跨学科研究方面的战略目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Cranmer其他文献

Steven Cranmer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Cranmer', 18)}}的其他基金

SHINE: Testing Theories of Coronal Heating and Solar Wind Acceleration with Multi-Messenger Data and Four-Dimension (4D) Forward Modeling
SHINE:利用多信使数据和四维 (4D) 正演模型测试日冕加热和太阳风加速理论
  • 批准号:
    2300452
  • 财政年份:
    2023
  • 资助金额:
    $ 19.33万
  • 项目类别:
    Standard Grant
Coronal Turbulence Driven from the Sun's Photosphere: Preparing for the Era of the Daniel K. Inouye Solar Telescope
太阳光球层驱动的日冕湍流:为丹尼尔·井上太阳望远镜时代做准备
  • 批准号:
    1613207
  • 财政年份:
    2016
  • 资助金额:
    $ 19.33万
  • 项目类别:
    Standard Grant
SHINE: Accelerating the Turbulent Solar Wind: One Flux Tube at a Time
SHINE:加速湍流太阳风:一次一根通量管
  • 批准号:
    1259519
  • 财政年份:
    2013
  • 资助金额:
    $ 19.33万
  • 项目类别:
    Continuing Grant

相似海外基金

EAGER: Accelerating decarbonization by representing catalysts with natural language
EAGER:通过用自然语言表示催化剂来加速脱碳
  • 批准号:
    2345734
  • 财政年份:
    2024
  • 资助金额:
    $ 19.33万
  • 项目类别:
    Standard Grant
NSF Engines Development Award: Accelerating A Just Energy Transition Through Innovative Nature-Inclusive Offshore Wind Farms (CT,DE,MA,MD,NJ,RI,VA)
NSF 发动机开发奖:通过创新的自然包容性海上风电场加速公正的能源转型(康涅狄格州、特拉华州、马里兰州、马里兰州、新泽西州、罗德岛州、弗吉尼亚州)
  • 批准号:
    2315558
  • 财政年份:
    2024
  • 资助金额:
    $ 19.33万
  • 项目类别:
    Cooperative Agreement
FMO/ML-Guided Drug Design: Accelerating Novel Inhibitor Development and Drug Discovery
FMO/ML 引导的药物设计:加速新型抑制剂的开发和药物发现
  • 批准号:
    24K20888
  • 财政年份:
    2024
  • 资助金额:
    $ 19.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Innovate for Sustainable Accelerating Systems
可持续加速系统创新
  • 批准号:
    10105952
  • 财政年份:
    2024
  • 资助金额:
    $ 19.33万
  • 项目类别:
    EU-Funded
Rapidly accElerating Mof-Based soRbents as A Novel Decarbonisation Technology (REMBRANDT)
快速加速 Mof 基吸附剂作为新型脱碳技术 (REMBRANDT)
  • 批准号:
    10111050
  • 财政年份:
    2024
  • 资助金额:
    $ 19.33万
  • 项目类别:
    EU-Funded
ART: Accelerating Research Translation in Southern Mississippi from Concepts to Careers
艺术:加速密西西比州南部从概念到职业的研究转化
  • 批准号:
    2331378
  • 财政年份:
    2024
  • 资助金额:
    $ 19.33万
  • 项目类别:
    Cooperative Agreement
Decay accelerating factor (CD55) protects against lectin pathway-mediated AT2 cell dysfunction in cigarette smoke-induced emphysema
衰变加速因子 (CD55) 可防止香烟烟雾引起的肺气肿中凝集素途径介导的 AT2 细胞功能障碍
  • 批准号:
    10990669
  • 财政年份:
    2024
  • 资助金额:
    $ 19.33万
  • 项目类别:
OpenBioMAPS: shared tools for accelerating UK bio-manufacturing
OpenBioMAPS:加速英国生物制造的共享工具
  • 批准号:
    BB/Y007808/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.33万
  • 项目类别:
    Research Grant
CC* INTEGRATION-SMALL: ADIABATIC MICROSERVICE LEVEL LOAD BALANCED FORWARDING ON PISA SWITCH FOR ACCELERATING URGENT PROCESSES IN SCIENCE DATA CENTER NETWORKS
CC* 集成小型:PISA 交换机上的绝热微服务级负载平衡转发,用于加速科学数据中心网络中的紧急进程
  • 批准号:
    2346729
  • 财政年份:
    2024
  • 资助金额:
    $ 19.33万
  • 项目类别:
    Standard Grant
CAREER: HayaRupu: Accelerating Natural Hazard Engineering with AI-Driven Discovery Loops
职业:HayaRupu:利用人工智能驱动的发现循环加速自然灾害工程
  • 批准号:
    2339678
  • 财政年份:
    2024
  • 资助金额:
    $ 19.33万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了