Coronal Turbulence Driven from the Sun's Photosphere: Preparing for the Era of the Daniel K. Inouye Solar Telescope

太阳光球层驱动的日冕湍流:为丹尼尔·井上太阳望远镜时代做准备

基本信息

  • 批准号:
    1613207
  • 负责人:
  • 金额:
    $ 27.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

One of the major unsolved problems in solar physics is the question regarding how the solar corona is heated to temperatures over a million degrees. One suspected mechanism is the conversion of magnetic field energy near the Sun's surface into heat energy through the dissipation of waves and turbulence. In this proposal, the PI will develop numerical models of magnetohydrodynamic (MHD) waves and turbulence. These models will allow the PI to trace the dynamical evolution of these features as they travel outward from the surface of the Sun into the outer corona. The numerical simulations will make predictions that can be tested by high-resolution observations made by telescopes such as the Daniel K. Inouye Solar Telescope (DKIST). The proposed research will support the training of the next generation of solar scientists. The PI will involve a graduate student in the proposed work and also plans to incorporate the research into his undergraduate and graduate courses. In this proposal, the PI proposes to construct realistic, physics-based models of MHD fluctuations traveling from the Sun?s surface into the outer corona to shed light on the problem of coronal heating. With current observations, the dynamics of small, inter-granular, magnetic flux concentrations have been difficult, however, these structures form the seeds that eventually heat the corona to such high temperatures. The models that the PI will produce will be used to track the inter-granular magnetic flux elements and measure their evolution as they move outward into the corona. The models will then be used to generate observable diagnostics for telescopes like DKIST to test the MHD turbulence theory.
太阳物理学中一个尚未解决的主要问题是日冕如何被加热到超过一百万度的温度。 一个被怀疑的机制是太阳表面附近的磁场能量通过波和湍流的耗散转化为热能。 在这项建议中,PI将开发磁流体动力学(MHD)波和湍流的数值模型。 这些模型将使PI能够追踪这些特征从太阳表面向外进入外日冕时的动态演变。 数值模拟将做出预测,这些预测可以通过丹尼尔K. Inouye太阳望远镜(DKIST)。 拟议的研究将支持下一代太阳科学家的培训。 PI将涉及一名研究生在拟议的工作,并计划将研究纳入他的本科和研究生课程。在这项建议中,PI建议建立现实的,基于物理的模型MHD波动旅行从太阳?的表面进入外日冕,以阐明日冕加热的问题。 根据目前的观测,小的、颗粒间的、磁通量集中的动力学一直很困难,然而,这些结构形成了最终将日冕加热到如此高温度的种子。 PI将产生的模型将用于跟踪粒间磁通量元素,并测量它们向外移动到日冕中时的演变。 然后,这些模型将用于为DKIST等望远镜生成可观察的诊断,以测试MHD湍流理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Cranmer其他文献

Steven Cranmer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Cranmer', 18)}}的其他基金

SHINE: Testing Theories of Coronal Heating and Solar Wind Acceleration with Multi-Messenger Data and Four-Dimension (4D) Forward Modeling
SHINE:利用多信使数据和四维 (4D) 正演模型测试日冕加热和太阳风加速理论
  • 批准号:
    2300452
  • 财政年份:
    2023
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant
SHINE: Accelerating the Turbulent Solar Wind: One Flux Tube at a Time
SHINE:加速湍流太阳风:一次一根通量管
  • 批准号:
    1540094
  • 财政年份:
    2014
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Continuing Grant
SHINE: Accelerating the Turbulent Solar Wind: One Flux Tube at a Time
SHINE:加速湍流太阳风:一次一根通量管
  • 批准号:
    1259519
  • 财政年份:
    2013
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Intermittency and Two-Fluid Transitions in Pulsed-Power-Driven Magnetized Turbulence
职业:脉冲功率驱动磁化湍流中的间歇性和二流体转变
  • 批准号:
    2339326
  • 财政年份:
    2023
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Continuing Grant
Three-dimensional measurement of driven topological defects for elucidating liquid crystal turbulence
用于阐明液晶湍流的驱动拓扑缺陷的三维测量
  • 批准号:
    22KJ0843
  • 财政年份:
    2023
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
How does stably-stratified shear-driven turbulence mix our oceans and estuaries?
稳定分层的剪切驱动湍流如何混合我们的海洋和河口?
  • 批准号:
    NE/W008971/1
  • 财政年份:
    2023
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Fellowship
Plasma detachment from a magnetic nozzle driven by instabilities, waves, and turbulence
由不稳定性、波浪和湍流驱动的等离子体从磁性喷嘴中脱离
  • 批准号:
    23H00096
  • 财政年份:
    2023
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Structure of quantized vortices in turbulence driven by two-fluid flow
双流体驱动湍流中的量子化涡结构
  • 批准号:
    22K03531
  • 财政年份:
    2022
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: A Systematic and Comprehensive Study of Black Hole-Driven Turbulence in Massive Galactic Systems
合作研究:大规模星系系统中黑洞驱动的湍流的系统综合研究
  • 批准号:
    2107735
  • 财政年份:
    2021
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant
Investigation of turbulence driven transport using an advanced laser diagnostics in the reactor relevant plasma
在反应堆相关等离子体中使用先进的激光诊断技术研究湍流驱动的传输
  • 批准号:
    21H04458
  • 财政年份:
    2021
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Collaborative Research: A Systematic and Comprehensive Study of Black Hole-Driven Turbulence in Massive Galactic Systems
合作研究:大规模星系系统中黑洞驱动的湍流的系统综合研究
  • 批准号:
    2107711
  • 财政年份:
    2021
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant
Numerical Modeling of Laser-Driven Experiments to Study Astrophysical Processes in Magnetized Turbulence
研究磁化湍流中天体物理过程的激光驱动实验的数值模拟
  • 批准号:
    2033925
  • 财政年份:
    2020
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Continuing Grant
AGS-PRF: The Building Blocks of Shear-Driven Atmospheric Turbulence
AGS-PRF:剪切驱动大气湍流的组成部分
  • 批准号:
    2031312
  • 财政年份:
    2020
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了