EAGER: Manufacturing Interface Dominated Microstructures in Bulk Metal-Metal Composites for Ultra-High Strength and Formability

EAGER:在块体金属-金属复合材料中制造界面主导的微观结构,以实现超高强度和可成形性

基本信息

  • 批准号:
    1541918
  • 负责人:
  • 金额:
    $ 11.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-15 至 2018-02-28
  • 项目状态:
    已结题

项目摘要

Nanostructured multilayers - materials comprised of alternating layers of metal with thicknesses of just a few nanometers - are a class of engineering materials with unique properties. Fabricating these multilayers in bulk form has significant processing challenges. Traditionally multilayer metallic multilayers have been synthesized using techniques which can limit the total film thickness to sub-millimeter levels, but recent research has demonstrated that bulk quantities of nanostructured metallic multilayers can be manufactured by an alternate process known as accumulative roll bonding. This EArly-concept Grants for Exploratory Research (EAGER) award supports the fundamental research needed for synthesis of magnesium-based nanostructured multilayers in bulk form through the roll bonding process. These materials have many applications as lightweight structural materials. Because magnesium alloys are 35 percent lighter than aluminum alloys and 78 percent lighter than steel, the potential societal impact and pay-offs of this research can be tremendous. Improvements in fuel efficiency for transportation industry means lower operating temperatures, longer-lasting components, and reduced greenhouse gas emissions. Driven by environmental programs across the consumer electronics industry, magnesium meets the design challenges that are instrumental to consumer electronics becoming lighter, thinner, and more mobile. The specific objectives of this combined modeling and experimental research are to: a) fabricate new nano-grained and phase interfaces-rich metal-metal (hexagonal close-packed magnesium - body-centered cubic niobium or vanadium) composites in bulk form, b) establish a fundamental understanding of the interface driven microstructure development and microstructure-property relationships, and c) formulate and validate a set of physics based models that enable fundamental understanding and can predict behavior of such materials. Upon successful completion of this research, proof of concept ability to process magnesium alloy nano-lamellar composite will be demonstrated and the fundamental science behind refining the composite to nano-scale and associated strength and formability enhancements will be determined.
纳米结构多层膜-由厚度仅为几纳米的金属交替层组成的材料-是一类具有独特性能的工程材料。以块体形式制造这些多层具有显著的加工挑战。传统上,多层金属多层膜已经使用可以将总膜厚度限制在亚毫米水平的技术来合成,但是最近的研究表明,大量的纳米结构金属多层膜可以通过称为累积辊压接合的替代工艺来制造。EARLY概念探索性研究赠款(EAGER)奖支持通过辊压粘合工艺以块状形式合成镁基纳米结构多层所需的基础研究。这些材料作为轻质结构材料具有许多应用。由于镁合金比铝合金轻35%,比钢轻78%,因此这项研究的潜在社会影响和回报可能是巨大的。运输行业燃油效率的提高意味着更低的工作温度、更耐用的部件和更少的温室气体排放。在整个消费电子行业环保计划的推动下,镁满足了消费电子产品变得更轻、更薄、更移动的的设计挑战。这项结合建模和实验研究的具体目标是:a)制造新的纳米晶粒和富相界面的金属-金属(六方密排镁-体心立方铌或钒)复合材料,B)建立对界面驱动的微观结构发展和微观结构-性能关系的基本理解,以及c)制定和验证一组基于物理学的模型,其能够实现基本理解并且能够预测这种材料的行为。成功完成这项研究后,将证明加工镁合金纳米层状复合材料的概念验证能力,并确定将复合材料细化到纳米级以及相关强度和可成形性增强的基础科学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marko Knezevic其他文献

Effects of element type on accuracy of microstructural mesh crystal plasticity finite element simulations and comparisons with elasto-viscoplastic fast Fourier transform predictions
单元类型对微结构网格晶体塑性有限元模拟精度的影响以及与弹粘塑性快速傅立叶变换预测的比较
Influence of specimen width on the elongation-to-fracture in cyclic-bending-under-tension of commercially pure titanium sheets
试样宽度对工业纯钛板拉伸循环弯曲断裂伸长率的影响
  • DOI:
    10.1016/j.ijmecsci.2024.109447
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Talukder Musfika Tasnim Oishi;Nick Pitkin;Nathan Miller;Desmond Mensah;D. Fullwood;Michael P. Miles;Brad L. Kinsey;Marko Knezevic
  • 通讯作者:
    Marko Knezevic
Modeling deformation, recovery, and recrystallization of tantalum using a higher order elasto-viscoplastic self-consistent model
  • DOI:
    10.1016/j.jmps.2024.105925
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Iftekhar A. Riyad;Bjørn Clausen;Daniel J. Savage;Youngung Jeong;Donald W. Brown;Marko Knezevic
  • 通讯作者:
    Marko Knezevic
Advanced phenomenological models guided heat treating processes for LPBF Ti-6Al-4V alloy
  • DOI:
    10.1016/j.mtcomm.2024.111186
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Zhe Song;Yinghang Liu;Jie Wang;Gaoming Zhu;Leyun Wang;Xiaoqin Zeng;Marko Knezevic
  • 通讯作者:
    Marko Knezevic
Assessing strength of ferrite and martensite in five dual phase and two martensitic steels via high throughput nanoindentation to elucidate origins of strength
  • DOI:
    10.1016/j.jmrt.2024.10.054
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Eli Webber;Marko Knezevic
  • 通讯作者:
    Marko Knezevic

Marko Knezevic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marko Knezevic', 18)}}的其他基金

GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
  • 批准号:
    2147122
  • 财政年份:
    2022
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Grain Interface Functional Design to Create Damage Resistance in Polycrystalline Metallic Materials
DMREF/合作研究:晶粒界面功能设计以提高多晶金属材料的抗损伤能力
  • 批准号:
    2118557
  • 财政年份:
    2022
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Continuing Grant
GOALI/Collaborative Research: Strain Gadient Plasticity Modeling to Link Microstructural Non-Local Effects of Dislocation/Interface Interactions with Ductility and Springback
GOALI/合作研究:应变梯度塑性建模将位错/界面相互作用的微观结构非局部效应与延展性和回弹联系起来
  • 批准号:
    1926677
  • 财政年份:
    2019
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
CAREER: An Experimentally-Informed Multi-Level Framework for Modeling Fracture of Hexagonal Metals
职业生涯:用于六方金属断裂建模的基于实验的多层次框架
  • 批准号:
    1650641
  • 财政年份:
    2017
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Immiscible Phase Interface-Driven Processing of Ultrafine-Laminated Structures for Lightweight and Strong Magnesium-Based Sheets
GOALI/合作研究:轻质高强度镁基板材的超细层压结构的不混溶相界面驱动加工
  • 批准号:
    1727495
  • 财政年份:
    2017
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant

相似海外基金

FMSG: Bio: Interface-Directed Manufacturing of Piezoelectric Biocrystal Thin Films
FMSG:生物:压电生物晶体薄膜的界面导向制造
  • 批准号:
    2328250
  • 财政年份:
    2024
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
A sharp-interface multi-physics particle method to elucidate porosity formation and elimination mechanisms in metal additive manufacturing
一种锐界面多物理粒子方法,用于阐明金属增材制造中孔隙的形成和消除机制
  • 批准号:
    23K16892
  • 财政年份:
    2023
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Manufacturing Semiconducting Nanoparticles at the Aerosol/Vapor-Phase Interface
职业:在气溶胶/气相界面制造半导体纳米粒子
  • 批准号:
    2144977
  • 财政年份:
    2022
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
Scalable Manufacturing of Single Crystalline Halide Perovskite Film via Interface Engineering
通过界面工程大规模制造单晶卤化物钙钛矿薄膜
  • 批准号:
    2024972
  • 财政年份:
    2020
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
Computer Controlled Rotational Moulding of liquid polymers for the manufacturing of elastomeric prosthetic interface liners.
用于制造弹性假体界面衬垫的液体聚合物的计算机控制旋转成型。
  • 批准号:
    2473785
  • 财政年份:
    2020
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Studentship
The development of a dynamic analytics software platform, which explains the key core dependencies of the vast multifaceted metrology problems within volume manufacturing through a highly visual interactive interface
动态分析软件平台的开发,通过高度可视化的交互界面解释了批量制造中大量多方面计量问题的关键核心依赖关系
  • 批准号:
    104049
  • 财政年份:
    2018
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Collaborative R&D
Development of novel manufacturing process for material interface design
开发用于材料界面设计的新型制造工艺
  • 批准号:
    17KK0126
  • 财政年份:
    2017
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
Technology development for additive manufacturing of 2D nanomaterial thin films at the air-water interface - phase I
空气-水界面二维纳米材料薄膜增材制造技术开发-第一阶段
  • 批准号:
    514312-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Idea to Innovation
AIR Option 1: Technology Translation: Large-scale manufacturing of polymer nanotube array thermal interface materials for efficient heat removal from high-temperature electronics
AIR选项1:技术转化:大规模制造聚合物纳米管阵列热界面材料,用于高效去除高温电子设备的热量
  • 批准号:
    1343265
  • 财政年份:
    2013
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
Construction of Kansei engineering interface with respect to design and manufacturing of food suitable for consumer fevorableness
构建感性工程界面,设计和制造适合消费者喜好的食品
  • 批准号:
    11832013
  • 财政年份:
    1999
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了