GOALI/Collaborative Research: Immiscible Phase Interface-Driven Processing of Ultrafine-Laminated Structures for Lightweight and Strong Magnesium-Based Sheets
GOALI/合作研究:轻质高强度镁基板材的超细层压结构的不混溶相界面驱动加工
基本信息
- 批准号:1727495
- 负责人:
- 金额:$ 23.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Magnesium (Mg) is the lightest non-hazardous structural metal, and its alloys have tremendous potential for achieving energy efficiency in the aerospace and automotive industries. Magnesium alloys often lack strength and formability, however, and traditional pathways for overcoming these drawbacks are insufficient and costly. Two-phase laminated materials, consisting of an Mg alloy phase and another distinctly dissimilar metal phase, have the potential to overcome these challenges. This Grant Opportunities for Academic Liaison with Industry (GOALI) award supports fundamental scientific research needed to achieve the processing breakthrough of making the first two-phase, finely laminated structures of Mg alloys, by first understanding the mechanisms by which these materials deform under applied load. One key element that fuels this project is the use of a new Mg alloy, called Mg500, which does not contain rare earth elements, and has very low aluminum content, making it an excellent candidate for many applications. The extraordinarily high density of Mg500/Niobium interfaces will permit multiple functions not possible in Mg-based materials to date. Understanding the deformation of these materials systems will make a critical contribution to the next generation of lightweight structural materials for automotive and aerospace applications. In addition, this research program will provide excellent educational opportunities for students, and training for the next generation of scientists and engineers in both academic and industrial settings. The new knowledge derived from this work will be disseminated broadly though software, tutorials and cloud-based Apps for data distribution.The scientific goals of this research program are to advance understanding on how hexagonal close-packed (HCP)/body-centered cubic (BCC) interfaces can control slip and twinning in novel ultra-fine laminated metallic composites and, as a result, radically enhance strength and formability. It is a cooperative program that joins the University of California at Santa Barbara, the University of New Hampshire, and the industrial partner, nanoMAG, LLC. The research activities are driven by hypotheses that HCP/BCC interfaces can thwart macroscopic instabilities and promote uniform deformation and formability. Together this university-industry team will carry out an integrated experimental and modeling strategy to understand how Mg500/Nb (HCP/BCC) interfaces can control plasticity processes, enabling homogeneous deformation of high-strength (1 GPa) Mg-based sheets to moderate strains ( 5%). This understanding will be integrated into a predictive multi-scale, interface-sensitive model for linking microstructural evolution during processing with mechanical performance.
镁(Mg)是最轻的无害结构金属,其合金在航空航天和汽车工业中具有实现能源效率的巨大潜力。然而,镁合金通常缺乏强度和成形性,克服这些缺点的传统途径是不够的,而且成本高昂。由镁合金相和另一种截然不同的金属相组成的两相层压材料具有克服这些挑战的潜力。这项学术与工业联络资助机会(GOALI)奖支持基础科学研究,通过首先了解这些材料在施加载荷下变形的机制,实现制造第一个两相精细层合镁合金结构的工艺突破。推动这个项目的一个关键因素是使用一种名为Mg500的新型镁合金,它不含稀土元素,铝含量非常低,使其成为许多应用的优秀候选者。Mg500/铌界面的超高密度将允许迄今为止在mg基材料中不可能实现的多种功能。了解这些材料系统的变形将为汽车和航空航天应用的下一代轻质结构材料做出关键贡献。此外,该研究项目将为学生提供良好的教育机会,并为学术和工业环境中的下一代科学家和工程师提供培训。从这项工作中获得的新知识将通过软件、教程和基于云的数据分发应用程序广泛传播。本研究计划的科学目标是促进对六方密堆积(HCP)/体心立方(BCC)界面如何控制新型超细层压金属复合材料的滑移和孪生的理解,从而从根本上提高强度和成形性。这是一个联合加州大学圣巴巴拉分校、新罕布什尔大学和工业合作伙伴nanoMAG, LLC的合作项目。研究活动是由HCP/BCC界面可以阻止宏观不稳定性,促进均匀变形和成形性的假设驱动的。这个大学-工业团队将共同开展一个综合的实验和建模策略,以了解Mg500/Nb (HCP/BCC)界面如何控制塑性过程,使高强度(1 GPa) mg基板的均匀变形达到中等应变(5%)。这种理解将集成到一个预测的多尺度、界面敏感模型中,用于将加工过程中的微观结构演变与机械性能联系起来。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strengthening of alloy AA6022-T4 by continuous bending under tension
- DOI:10.1016/j.msea.2019.04.109
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:M. Knezevic;C. Poulin;Xiaodong Zheng;Shijian Zheng;I. Beyerlein
- 通讯作者:M. Knezevic;C. Poulin;Xiaodong Zheng;Shijian Zheng;I. Beyerlein
Origin of plastic anisotropy in (ultra)-fine-grained Mg–Zn–Zr alloy processed by isothermal multi-step forging and rolling: Experiments and modeling
- DOI:10.1016/j.msea.2017.12.045
- 发表时间:2018-01
- 期刊:
- 影响因子:6.4
- 作者:D. Nugmanov;M. Knezevic;Milovan Zecevic;O. Sitdikov;M. Markushev;I. Beyerlein
- 通讯作者:D. Nugmanov;M. Knezevic;Milovan Zecevic;O. Sitdikov;M. Markushev;I. Beyerlein
Strain-Rate Sensitivity, Tension-Compression Asymmetry, r-Ratio, Twinning, and Texture Evolution of a Rolled Magnesium Alloy Mg-1.3Zn-0.4Ca-0.4Mn
- DOI:10.1007/s11661-020-05841-x
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:E. Vasilev;Nicholas C. Ferreri;R. Decker;I. Beyerlein;M. Knezevic
- 通讯作者:E. Vasilev;Nicholas C. Ferreri;R. Decker;I. Beyerlein;M. Knezevic
Microstructure and texture evolution in Mg/Nb layered materials made by accumulative roll bonding
- DOI:10.1016/j.ijplas.2019.08.015
- 发表时间:2020-02-01
- 期刊:
- 影响因子:9.8
- 作者:Savage, Daniel J.;Beyerlein, Irene J.;Knezevic, Marko
- 通讯作者:Knezevic, Marko
Adjustment of the Mechanical Properties of Mg2Nd and Mg2Yb by Optimizing Their Microstructures
- DOI:10.3390/met11030377
- 发表时间:2021-02
- 期刊:
- 影响因子:2.9
- 作者:Jonas Schmidt;I. Beyerlein;M. Knezevic;W. Reimers
- 通讯作者:Jonas Schmidt;I. Beyerlein;M. Knezevic;W. Reimers
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marko Knezevic其他文献
Effects of element type on accuracy of microstructural mesh crystal plasticity finite element simulations and comparisons with elasto-viscoplastic fast Fourier transform predictions
单元类型对微结构网格晶体塑性有限元模拟精度的影响以及与弹粘塑性快速傅立叶变换预测的比较
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.3
- 作者:
Jacob Weiss;Marko Knezevic - 通讯作者:
Marko Knezevic
Influence of specimen width on the elongation-to-fracture in cyclic-bending-under-tension of commercially pure titanium sheets
试样宽度对工业纯钛板拉伸循环弯曲断裂伸长率的影响
- DOI:
10.1016/j.ijmecsci.2024.109447 - 发表时间:
2024 - 期刊:
- 影响因子:7.3
- 作者:
Talukder Musfika Tasnim Oishi;Nick Pitkin;Nathan Miller;Desmond Mensah;D. Fullwood;Michael P. Miles;Brad L. Kinsey;Marko Knezevic - 通讯作者:
Marko Knezevic
Modeling deformation, recovery, and recrystallization of tantalum using a higher order elasto-viscoplastic self-consistent model
- DOI:
10.1016/j.jmps.2024.105925 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Iftekhar A. Riyad;Bjørn Clausen;Daniel J. Savage;Youngung Jeong;Donald W. Brown;Marko Knezevic - 通讯作者:
Marko Knezevic
Advanced phenomenological models guided heat treating processes for LPBF Ti-6Al-4V alloy
- DOI:
10.1016/j.mtcomm.2024.111186 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Zhe Song;Yinghang Liu;Jie Wang;Gaoming Zhu;Leyun Wang;Xiaoqin Zeng;Marko Knezevic - 通讯作者:
Marko Knezevic
Assessing strength of ferrite and martensite in five dual phase and two martensitic steels via high throughput nanoindentation to elucidate origins of strength
- DOI:
10.1016/j.jmrt.2024.10.054 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Eli Webber;Marko Knezevic - 通讯作者:
Marko Knezevic
Marko Knezevic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marko Knezevic', 18)}}的其他基金
DMREF/Collaborative Research: Grain Interface Functional Design to Create Damage Resistance in Polycrystalline Metallic Materials
DMREF/合作研究:晶粒界面功能设计以提高多晶金属材料的抗损伤能力
- 批准号:
2118557 - 财政年份:2022
- 资助金额:
$ 23.29万 - 项目类别:
Continuing Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
- 批准号:
2147122 - 财政年份:2022
- 资助金额:
$ 23.29万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Strain Gadient Plasticity Modeling to Link Microstructural Non-Local Effects of Dislocation/Interface Interactions with Ductility and Springback
GOALI/合作研究:应变梯度塑性建模将位错/界面相互作用的微观结构非局部效应与延展性和回弹联系起来
- 批准号:
1926677 - 财政年份:2019
- 资助金额:
$ 23.29万 - 项目类别:
Standard Grant
CAREER: An Experimentally-Informed Multi-Level Framework for Modeling Fracture of Hexagonal Metals
职业生涯:用于六方金属断裂建模的基于实验的多层次框架
- 批准号:
1650641 - 财政年份:2017
- 资助金额:
$ 23.29万 - 项目类别:
Standard Grant
EAGER: Manufacturing Interface Dominated Microstructures in Bulk Metal-Metal Composites for Ultra-High Strength and Formability
EAGER:在块体金属-金属复合材料中制造界面主导的微观结构,以实现超高强度和可成形性
- 批准号:
1541918 - 财政年份:2015
- 资助金额:
$ 23.29万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
- 批准号:
2245117 - 财政年份:2022
- 资助金额:
$ 23.29万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129825 - 财政年份:2022
- 资助金额:
$ 23.29万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129776 - 财政年份:2022
- 资助金额:
$ 23.29万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
- 批准号:
2219788 - 财政年份:2022
- 资助金额:
$ 23.29万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
- 批准号:
2302217 - 财政年份:2022
- 资助金额:
$ 23.29万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
- 批准号:
2147126 - 财政年份:2022
- 资助金额:
$ 23.29万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
- 批准号:
2147122 - 财政年份:2022
- 资助金额:
$ 23.29万 - 项目类别:
Standard Grant
Collaborative Research: ISS: GOALI: Transients and Instabilities in Flow Boiling and Condensation Under Microgravity
合作研究:ISS:GOALI:微重力下流动沸腾和冷凝的瞬态和不稳定性
- 批准号:
2126461 - 财政年份:2021
- 资助金额:
$ 23.29万 - 项目类别:
Standard Grant
Collaborative Research/GOALI: Fully Continuous Downstream Processing Enabled by Coupled Precipitation-Filtration Capture Operations
协作研究/GOALI:通过耦合沉淀-过滤捕获操作实现完全连续的下游处理
- 批准号:
2032261 - 财政年份:2021
- 资助金额:
$ 23.29万 - 项目类别:
Standard Grant
Collaborative Research & GOALI: Direct-Fed Ethanol Metal-Supported Solid Oxide Fuel Cells
合作研究
- 批准号:
2050691 - 财政年份:2021
- 资助金额:
$ 23.29万 - 项目类别:
Standard Grant