Pragmatic Parameterized Algorithms

实用的参数化算法

基本信息

项目摘要

The paradigms of fixed-parameter and moderately exponential algorithmshave been spectacularly successful in obtaining efficient algorithms fora number of NP-complete problems. Many of these algorithms are, however,purely theoretical in the sense that they are not implementable in areal-world setting, i.e., under tight time and cost constraints. Forinstance, there are algorithms that rely on algorithmic meta-theorems - results that hold not just for a few isolated problemsbut for a whole class of problems. While meta-theorems are immensely useful inquickly establishing whether a problem at hand admits an algorithm of aparticular type, they are usually not very useful in designing algorithmsin practice. Then again there are algorithms that use deep structural theoremssuch as the Graph Minors Theorem. Such algorithms are not implementable either. Finally there are algorithms that use structural parameters that are themselves hardto compute. Efficient FPT-algorithms wrt these parameters might not be efficient in practice. The broad goal of this project is to bridge the gap between purely theoretical algorithmsand heuristics that are extensively used in practice but which produce solutions without any quality guarantee. In particular, we seek to develop efficient algorithms that are (1) easily translatable into programs and run successfully under real-worldconstraints; and, (2) competitive with or even faster than the currentbest algorithms in their asymptotic behavior. Our main aim is to improve and create new algorithmic techniques in order to take a stepforward towards implementability. These new algorithmic techniques themselves be complex or have the flavor of meta-theorems but we areinterested in those which are amenable to implementation.The real-world constraints we have in mind include implementation time,space requirements and running time guarantees. By providing transparenttime and space bounds, i.e., by keeping polynomial and constants factorswithin reasonable limits, we wish to push the envelope of algorithmsthat can eventually be engineered for use in industry andapplications.
固定参数算法和中等指数算法的范例在获得许多NP完全问题的有效算法方面取得了巨大的成功。 然而,这些算法中的许多是纯理论的,因为它们在现实世界设置中是不可实现的,即,在严格的时间和成本限制下。例如,有些算法依赖于算法元定理--这些结果不仅适用于少数孤立的问题,而且适用于整个一类问题。 虽然元定理在快速确定一个问题是否允许一个特定类型的算法方面非常有用,但它们在实际设计算法时通常不是很有用。还有一些算法使用了深层的结构定理,比如图次定理。这样的算法也是不可实现的。最后,还有一些算法使用的结构参数本身就很难计算。这些参数的有效FPT算法在实践中可能不是有效的。 这个项目的广泛目标是弥合纯理论算法和在实践中广泛使用但没有任何质量保证的解决方案之间的差距。特别是,我们寻求开发高效的算法,(1)容易翻译成程序,并在现实世界的约束下成功运行;和,(2)竞争,甚至比当前最好的算法在其渐近行为更快。我们的主要目标是改进和创建新的算法技术,以便向可实现性迈进一步。这些新的算法技术本身是复杂的或具有元定理的味道,但我们感兴趣的是那些易于实现的,我们考虑的现实世界的约束包括实现时间,空间要求和运行时间保证。 通过提供连续的时间和空间边界,即,通过将多项式和常数因子保持在合理的范围内,我们希望推动算法的包络,最终可以在工业和应用中使用。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exact algorithms for problems related to the densest k-set problem
  • DOI:
    10.1016/j.ipl.2014.04.009
  • 发表时间:
    2014-09-01
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Chang, Maw-Shang;Chen, Li-Hsuan;Wu, Guan-Han
  • 通讯作者:
    Wu, Guan-Han
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Peter Rossmanith其他文献

Professor Dr. Peter Rossmanith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Peter Rossmanith', 18)}}的其他基金

Foundations of Efficient Model Checking for Counting Logics on Structurally Sparse Graph Classes
结构稀疏图类计数逻辑的高效模型检查基础
  • 批准号:
    426003173
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Theoretical and Practical Aspects of Kernelization
核化的理论和实践方面
  • 批准号:
    206471640
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Strukturelle Graphtheorie und parametrisierte Komplexität
结构图理论和参数化复杂性
  • 批准号:
    100452017
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Entscheidungs- und Optimierungsprobleme für Graphen mit gegebener Baumzerlegung
给定树分解的图的决策和优化问题
  • 批准号:
    77821027
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Intuitive Strategien zur Lösung von Graph- und Erfüllbarkeitsproblemen
解决图形和可满足性问题的直观策略
  • 批准号:
    17935491
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Algorithmen mit verfeinerter Worst-Case-Analyse auf der Basis geeigneter Schwierigkeitsbegriffe
基于适当难度术语的精细最坏情况分析算法
  • 批准号:
    5433832
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

New Algorithms for Parameterized Graph Problems
参数化图问题的新算法
  • 批准号:
    2743968
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Designing Parameterized and Approximation Algorithms for weighted and directed graphs
设计加权图和有向图的参数化和近似算法
  • 批准号:
    19K21537
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Parameterized Analysis of Bio-inspired Computing - From Theory to High Performing Algorithms
仿生计算的参数化分析——从理论到高性能算法
  • 批准号:
    DP140103400
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
SHF: Small: Exascale Formal Verification Algorithms for Parameterized Probabilistic Models of Complex Computational Systems
SHF:小型:复杂计算系统参数化概率模型的百亿亿次形式验证算法
  • 批准号:
    1422257
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Algorithm Engineering for NP-hard Problems: Parameterized Algorithms versus Established Techniques
NP 难问题的算法工程:参数化算法与现有技术
  • 批准号:
    230839996
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Advanced Methods for Automated Optimization and Modeling of the Empirical Performance of Highly Parameterized Heuristic Algorithms
高度参数化启发式算法的经验性能自动优化和建模的先进方法
  • 批准号:
    222619695
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups
Average-Case Analysis of Parameterized Problems and Algorithms
参数化问题和算法的平均情况分析
  • 批准号:
    213251566
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fast parameterized pattern matching algorithms based on data compression
基于数据压缩的快速参数化模式匹配算法
  • 批准号:
    23700022
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on parameterized graph algorithms
参数化图算法研究
  • 批准号:
    21500007
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Parameterized algorithms design with applications in computational biology
参数化算法设计及其在计算生物学中的应用
  • 批准号:
    249898-2002
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了