Advanced Methods for Automated Optimization and Modeling of the Empirical Performance of Highly Parameterized Heuristic Algorithms

高度参数化启发式算法的经验性能自动优化和建模的先进方法

基本信息

项目摘要

Hard combinatorial problems play a key role in many areas of importance to both the economy and society, including formal hard- and software verification, decision support systems, production & transportation planning, and resource management and allocation. In many cases, provably efficient algorithms are believed not to exist, but heuristic methods are able to solve instances of these problems effectively that occur in practice.However, the traditional design process of heuristic algorithms is suboptimal. It typically involves a manual phase of exploring combinations of many algorithmic components and their parameters (so-called configurations of the algorithm) and empirically evaluating them on benchmark problems. The manual exploration of the combinatorial space of possible configurations is difficult, tedious, and time-consuming, and as a result, algorithm designers often fail to exploit the full potential of their highly parameterized algorithms.The key objective of this project is to improve upon this manual algorithm design process, by developing fully-formalized procedures for computer-aided algorithm design and analysis, that help human algorithm designers and end users take full advantage of the flexibility of highly parameterized algorithms. In comprehensive previous work on algorithm configuration (AC) - the problem of finding the best configuration of highly parameterized algorithms - the applicant developed the best existing AC procedures. These AC procedures already led to substantial advances in the state of the art for solving various hard computational problems.Partial objectives of this project are:(1) to substantially improve the state of the art for AC further;(2) based on automated AC procedures, to construct high-performance algorithm portfolios (using custom-made complementary configurations of highly parameterized algorithms); and(3) to not only improve algorithm performance, but to also automatically inform algorithm designers about characteristics that determine their instances’ empirical hardness, components that determine their algorithms’ empirical performance, and the interaction of the two.The automated procedures to be developed are independent of particular domains and algorithms and can thus be applied flexibly. As part of this project, the developed methods will be applied in collaboration with domain experts(4) to substantially advance the state of the art for a broad range of applications of considerable importance to economy and society.These applications include formal software verification (with applications in computer security), answer-set programming (with applications in decision support systems), mixed integer programming (with applications in the optimization of industrial processes and of public transportation systems), automated planning (with applications in autonomous robots and in production & logistics planning), and resource management & allocation (an especially important problem in an age of ever sparser natural resources).All automated procedures we will develop will be made publically available, to support domain experts in an even broader range of problems to advance the state of the art in their respective area of expertise.
硬组合问题在经济和社会的许多重要领域发挥着关键作用,包括正式的硬件和软件验证,决策支持系统,生产和运输计划以及资源管理和分配。在许多情况下,可证明的有效算法被认为是不存在的,但启发式方法能够有效地解决在实践中发生的这些问题的实例。然而,传统的启发式算法的设计过程是次优的。它通常涉及一个手动阶段,探索许多算法组件及其参数(所谓的算法配置)的组合,并在基准问题上对它们进行经验评估。手工探索可能配置的组合空间是困难的、乏味的和耗时的,因此,算法设计者经常不能充分利用其高度参数化算法的潜力。该项目的主要目标是通过开发计算机辅助算法设计和分析的完全形式化程序来改进这种手动算法设计过程,从而帮助人类算法设计者和最终用户充分利用高度参数化算法的灵活性。在对算法配置(AC)(寻找高度参数化算法的最佳配置的问题)的综合先前工作中,申请人开发了现有的最佳AC程序。这些AC程序已经在解决各种困难的计算问题方面取得了实质性的进展。该项目的部分目标是:(1)进一步大幅提高AC的技术水平;(2)基于自动化AC程序,构建高性能算法组合(使用定制的高参数化算法互补配置);(3)不仅要提高算法性能,还要自动告知算法设计者决定其实例经验硬度的特征,决定其算法经验性能的组件,以及两者的相互作用。要开发的自动化程序独立于特定的领域和算法,因此可以灵活地应用。作为该项目的一部分,开发的方法将与领域专家(4)合作应用,以实质性地推进对经济和社会具有相当重要意义的广泛应用的最新技术。这些应用包括正式的软件验证(在计算机安全方面的应用)、答案集编程(在决策支持系统方面的应用)、混合整数编程(在工业过程和公共交通系统的优化方面的应用)、自动化规划(在自主机器人和生产与物流规划方面的应用)、资源管理和分配(在自然资源日益匮乏的时代,这是一个尤为重要的问题)。我们将开发的所有自动化程序都将向公众开放,以支持领域专家在更广泛的问题上推进各自专业领域的最新技术。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ASlib: A benchmark library for algorithm selection
  • DOI:
    10.1016/j.artint.2016.04.003
  • 发表时间:
    2016-08-01
  • 期刊:
  • 影响因子:
    14.4
  • 作者:
    Bischl, Bernd;Kerschke, Pascal;Vanschoren, Joaquin
  • 通讯作者:
    Vanschoren, Joaquin
Bayesian Optimization in a Billion Dimensions via Random Embeddings
  • DOI:
    10.1613/jair.4806
  • 发表时间:
    2013-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ziyun Wang;M. Zoghi;F. Hutter;David Matheson;Nando de Freitas
  • 通讯作者:
    Ziyun Wang;M. Zoghi;F. Hutter;David Matheson;Nando de Freitas
Pitfalls and Best Practices in Algorithm Configuration
Algorithm runtime prediction: Methods & evaluation
  • DOI:
    10.1016/j.artint.2013.10.003
  • 发表时间:
    2014-01-01
  • 期刊:
  • 影响因子:
    14.4
  • 作者:
    Hutter, Frank;Xu, Lin;Leyton-Brown, Kevin
  • 通讯作者:
    Leyton-Brown, Kevin
The Configurable SAT Solver Challenge (CSSC)
  • DOI:
    10.1016/j.artint.2016.09.006
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Hutter;M. Lindauer;A. Balint;Sam Bayless;H. Hoos;Kevin Leyton-Brown
  • 通讯作者:
    F. Hutter;M. Lindauer;A. Balint;Sam Bayless;H. Hoos;Kevin Leyton-Brown
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Frank Hutter, Ph.D.其他文献

Professor Dr. Frank Hutter, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Frank Hutter, Ph.D.', 18)}}的其他基金

Model-based Configuration of Algorithms for Solving Hard Computational Problems
用于解决困难计算问题的基于模型的算法配置
  • 批准号:
    193799061
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Non-invasive Condition Monitoring of Ventricular Assistive Devices Using Automated Advanced Acoustic Methods
使用自动化先进声学方法对心室辅助装置进行无创状态监测
  • 批准号:
    10629554
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Exploring unsupervised domain adaptation methods for automated linear disturbance mapping
探索自动线性扰动映射的无监督域适应方法
  • 批准号:
    577643-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
CDS&E: HAM3R: Heterogeneous Automated Management of Multiscale Methods and Resources
CDS
  • 批准号:
    2204011
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Automated data collection and machine learning methods for civil infrastructure condition assessment in sparsely inhabited regions of Canada
用于加拿大人烟稀少地区民用基础设施状况评估的自动数据收集和机器学习方法
  • 批准号:
    RGPIN-2021-03916
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Development of automated path search methods for reactions including spin-inversion
开发包括自旋反转在内的反应自动路径搜索方法
  • 批准号:
    22K05031
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of rapid and automated remote sensing methods for ground engagement equipment enabling selective mining
开发用于地面接触设备的快速自动化遥感方法,以实现选择性采矿
  • 批准号:
    561062-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Deep learning methods for automated and accurate reconstruction of protein structures from cryo-EM image data
用于从冷冻电镜图像数据自动准确重建蛋白质结构的深度学习方法
  • 批准号:
    10459829
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Deep learning methods for automated and accurate reconstruction of protein structures from cryo-EM image data
用于从冷冻电镜图像数据自动准确重建蛋白质结构的深度学习方法
  • 批准号:
    10707036
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Development of methods for automated preprocedural CT assessment for TAVR by artificial intelligence
开发人工智能自动术前 CT 评估 TAVR 的方法
  • 批准号:
    21K20920
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Collaborative Research: From User Reviews to User-Centered Generative Design: Automated Methods for Augmented Designer Performance
协作研究:从用户评论到以用户为中心的生成设计:增强设计师性能的自动化方法
  • 批准号:
    2050130
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了