Foundations of Efficient Model Checking for Counting Logics on Structurally Sparse Graph Classes

结构稀疏图类计数逻辑的高效模型检查基础

基本信息

项目摘要

Many decision and optimization problems on graphs and databases can be expressed in the language of logic. Meta-algorithms are algorithms that are not restricted to one particular problem. They can solve all problems that can be expressed by certain logical formulas, which makes them a very flexible tool.Several such meta-algorithms are already known. For first order logic the corresponding problems can be solved on certain graph classes as long as the graph classes have specific structural properties. For the more powerful monadic second order logic such algorithms exist, too, but work only on more restricted graph classes.In counting problems the number and sizes of sets play an important role. Such problems cannot be expressed in first order logic or only in a restricted way, but are practically highly relevant. To model counting problems it is possible to define corresponding counting logics. In the last years some results were achieved in this area, but many questions are still open.The goal of this project is to investigate which counting problems can be solved on what graph classes by efficient meta-algorithms. Here we want to distinguish between exact and approximate counting and also work on related problems like enumeration. Besides designing efficient algorithms we also want to find matching lower bounds. This line of research will be initiated by the following three problems that form a corner stone of the project:We consider a powerful counting logic, for which we already know that efficient evaluation is impossible even on very restricted graph classes. We want to design an efficient approximate evaluation algorithm for this logic.Furthermore we want to find meta-algorithms for counting problems with parity conditions by investigating first order logic with modulo counting.The partial dominating set problem is to find a set of vertices that dominate half of the graph. We investigate a counting logic that ispowerful enough to handle this and similar problems. In that way we want efficiently to solve several domination- and covering problems on graph classes that are as general as possible.
图和数据库中的许多决策和优化问题都可以用逻辑语言来表达。元算法是不限于一个特定问题的算法。它们可以解决所有可以用某些逻辑公式表示的问题,这使得它们成为一个非常灵活的工具。 对于一阶逻辑,只要图类具有特定的结构性质,相应的问题就可以在某些图类上得到解决。对于更强大的一元二阶逻辑,也存在这样的算法,但只适用于更受限制的图类。这些问题不能用一阶逻辑或仅以受限的方式表达,但实际上高度相关。为了对计数问题建模,可以定义相应的计数逻辑。在过去的几年里,在这一领域取得了一些成果,但许多问题仍然是开放的。本项目的目标是调查哪些计数问题可以解决什么图类的有效元算法。在这里,我们要区分精确计数和近似计数,并处理相关的问题,如枚举。除了设计有效的算法,我们还希望找到匹配的下界。这条研究路线将由以下三个问题开始,这些问题构成了该项目的基石:我们考虑一个强大的计数逻辑,我们已经知道,即使在非常有限的图类上,有效的评估也是不可能的。我们希望为这个逻辑设计一个有效的近似求值算法,并通过研究一阶逻辑的模计数问题,寻找具有奇偶性条件的计数问题的元算法。部分控制集问题是寻找一组控制图的一半的顶点。我们研究了一个计数逻辑,它足够强大来处理这个和类似的问题。通过这种方式,我们希望有效地解决几个控制和覆盖问题的图类是尽可能一般。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Peter Rossmanith其他文献

Professor Dr. Peter Rossmanith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Peter Rossmanith', 18)}}的其他基金

Pragmatic Parameterized Algorithms
实用的参数化算法
  • 批准号:
    221760991
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Theoretical and Practical Aspects of Kernelization
核化的理论和实践方面
  • 批准号:
    206471640
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Strukturelle Graphtheorie und parametrisierte Komplexität
结构图理论和参数化复杂性
  • 批准号:
    100452017
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Entscheidungs- und Optimierungsprobleme für Graphen mit gegebener Baumzerlegung
给定树分解的图的决策和优化问题
  • 批准号:
    77821027
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Intuitive Strategien zur Lösung von Graph- und Erfüllbarkeitsproblemen
解决图形和可满足性问题的直观策略
  • 批准号:
    17935491
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Algorithmen mit verfeinerter Worst-Case-Analyse auf der Basis geeigneter Schwierigkeitsbegriffe
基于适当难度术语的精细最坏情况分析算法
  • 批准号:
    5433832
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Adaptive and Efficient Robot Positioning Through Model and Task Fusion
通过模型和任务融合实现自适应且高效的机器人定位
  • 批准号:
    DE240100149
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Tractable human distal lung organoid model as a new efficient tool to study mesenchymal-epithelial interactions in COPD
易处理的人远端肺类器官模型作为研究慢性阻塞性肺病间充质-上皮相互作用的新有效工具
  • 批准号:
    NC/Y500641/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Training Grant
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
  • 批准号:
    2339084
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Efficient and Scalable Large Foundational Model Training on Supercomputers for Science
职业:科学超级计算机上高效且可扩展的大型基础模型训练
  • 批准号:
    2340011
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: New data integration approaches for efficient and robust meta-estimation, model fusion and transfer learning
职业:新的数据集成方法,用于高效、稳健的元估计、模型融合和迁移学习
  • 批准号:
    2337943
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: FMitF: Track I: DeepSmith: Scheduling with Quality Guarantees for Efficient DNN Model Execution
合作研究:FMitF:第一轨:DeepSmith:为高效 DNN 模型执行提供质量保证的调度
  • 批准号:
    2349461
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311596
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311598
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Robust and Efficient Model-based Reinforcement Learning
稳健高效的基于模型的强化学习
  • 批准号:
    EP/X03917X/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CoolCows - developing and demonstrating a new model using genomics and IVF to rapidly breed more methane-efficient, sustainable cattle
CoolCows - 开发并展示一种使用基因组学和 IVF 的新模型,以快速培育更高效、可持续的甲烷牛
  • 批准号:
    10078984
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Responsive Strategy and Planning
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了