Catchment classification and regionalisation with Self-Organising Maps (SOMs) and flexible model structures.

使用自组织地图 (SOM) 和灵活的模型结构进行流域分类和区域化。

基本信息

项目摘要

The major research objective of the project is catchment classification with a view to regionalization. Three different clustering methods serve as a basis for catchment classification: Self Organising Maps (SOMs), a benchmark conceptual model and the SUPERFLEX modelling framework. We will classify catchments by runoff behaviour and by hydroclimatic and physiographic properties. The project will use data from approximately 100 catchments in western Germany. Next, the classification methods will be compared and based on the best classification method we will regionalize runoff and model parameters to test its suitability for regionalization.Catchment classification as well as regionalization will be used to gain insight into the functioning of meso-scale river basins: to uncover resemblances and discrepancies, to interpret their hydrological behaviour and to provide meaningful data-backed-up hypothesis. Furthermore, we will develop auto-mated procedures of our methods and assemble them into a toolbox, which can be used by a wide group of users. This study will strive for a dual approach: firstly, to implement novel clustering methods with a view to regionalization and secondly, to stimulate the ongoing and highly relevant discussion on catchment classification and regionalisation.
该项目的主要研究目标是流域分类,以便进行区域化。三种不同的聚类方法作为流域分类的基础:自组织地图(SOM),基准概念模型和SUPERFLEX建模框架。我们将根据径流特性和水文气候及地文特性对集水区进行分类。该项目将使用来自德国西部约100个集水区的数据。接下来,我们将比较各种分类方法,并根据最佳分类方法对径流和模型参数进行区域化,以测试其是否适合区域化。集水区分类和区域化将用于深入了解中尺度流域的功能:揭示相似性和差异,解释其水文行为,并提供有意义的数据支持假设。此外,我们将开发我们的方法的自动化程序,并将它们组装成一个工具箱,它可以被广泛的用户群使用。这项研究将努力采取双重方法:首先,实施新的聚类方法,以区域化,其次,刺激正在进行的和高度相关的讨论流域分类和区域化。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Is Catchment Classification Possible by Means of Multiple Model Structures? A Case Study Based on 99 Catchments in Germany
  • DOI:
    10.3390/hydrology3020022
  • 发表时间:
    2016-06
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    R. Ley;H. Hellebrand;M. Casper;F. Fenicia
  • 通讯作者:
    R. Ley;H. Hellebrand;M. Casper;F. Fenicia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Markus Casper其他文献

Professor Dr.-Ing. Markus Casper的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Markus Casper', 18)}}的其他基金

Improving the spatio-temporal accuracy of mesoscale hydrological modelling through multi-sensor remote sensing data fusion and assimilation
通过多传感器遥感数据融合同化提高中尺度水文建模时空精度
  • 批准号:
    426111700
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于传孢类型藓类植物系统的修订
  • 批准号:
    30970188
  • 批准年份:
    2009
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Developing a Census Based Generative Geodemographic Classification System
开发基于人口普查的生成地理人口分类系统
  • 批准号:
    ES/Z50273X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: EAR-PF: Establishing a new eruption classification with a multimethod approach
博士后奖学金:EAR-PF:用多种方法建立新的喷发分类
  • 批准号:
    2305462
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
Classification of contemporary Kansai dialects
当代关西方言的分类
  • 批准号:
    24K03842
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y000455/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y001117/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
From single-cell transcriptomic to single-cell fluxomic: characterising metabolic dysregulations for breast cancer subtype classification
从单细胞转录组到单细胞通量组:表征乳腺癌亚型分类的代谢失调
  • 批准号:
    EP/Y001613/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Particle classification and identification in cryoET of crowded cellular environments
拥挤细胞环境中 CryoET 中的颗粒分类和识别
  • 批准号:
    BB/Y514007/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Enhanced X-ray material classification using SiPMs and fast scintillators
使用 SiPM 和快速闪烁体增强 X 射线材料分类
  • 批准号:
    2905969
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
  • 批准号:
    2403360
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: IMPRESS-U: Exploratory Research in Robust Machine Learning for Object Detection and Classification
EAGER:IMPRESS-U:用于对象检测和分类的鲁棒机器学习的探索性研究
  • 批准号:
    2415299
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了