Evaluation for Actionable Change: A Data-Driven Approach
评估可行的变革:数据驱动的方法
基本信息
- 批准号:1544273
- 负责人:
- 金额:$ 79.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal was submitted in response to the Promoting Research and Innovation in Methodologies for Evaluation (PRIME) solicitation NSF 15-540. The PRIME program seeks to support research on evaluation with special emphasis on exploring innovative approaches, building on and expanding the theoretical foundations, and growing the capacity and infrastructure of the evaluation field. Increasing pressures for accountability have resulted in a push for rigorous evaluation of educational programs and practice. Yet rigorous evaluations such as Randomized Control Trials (RCTs) are expensive and often show small effects. Even RCTs of widely-adopted digital learning platforms can show disappointing results and these results have little impact on subsequent adoptions of programs already entrenched in the educational landscape. New methods are needed to both estimate effects and to indicate ways of improving outcomes for already-adopted digital learning tools. With platforms currently in wide-scale use, novel approaches to assessing use patterns and their relations with outcomes can both evaluate maximal effectiveness and provide means for improved effectiveness. This research will develop an evaluation of ST Math, a K-8 digital learning platform designed to strengthen the mathematical competency of students through enhancing both their understanding of math concepts and their motivation for math learning. By investing in evaluation innovations to improve digital learning platforms such as ST Math, such programs could reach large numbers of children with maximal effectiveness with each iteration. Development of automated tools for improvement can also enhance both the efficiency and efficacy of the digital learning platforms. This work will be accomplished through a partnership between researchers at North Carolina State University (NC State) with expertise in educational evaluation, educational data mining, and assessment with program developers at the non-profit MIND Research Institute (MIND).This project will explore novel, and noninvasive, approaches for determining the impact of the ST Math digital learning environment. It will advance the analytical basis for formative assessment using process data and build algorithms that improve STEM teaching and learning by facilitating the automatic recognition of teachable moments for learning. The transformative potential of this research resides in the creation of new cross-disciplinary approaches that can be used to not only evaluate impact, but to inform improved teaching and learning in STEM, by leveraging observed behaviors of students and teachers and educational data mining techniques. Specifically, this research will explore novel methods for detecting, visualizing, and evaluating students? puzzle-solving and puzzle-selection behaviors. The PIs will assess whether the detected patterns are driven by students? incoming competence or can be used to predict their short and long-term performance. By linking student and teacher behavior patterns with important learning and motivational outcomes, the researchers may be able to recommend promising actions to teachers and potential refinements to developers. This work has the potential to not only transform the use and success of the ST Math platform, but to create methods that can be refined and transferred to the evaluation and implementation of other platforms.
该提案是为了响应促进评价方法研究和创新(PRIME)的NSF 15-540征集而提交的。PRIME计划旨在支持评价研究,特别强调探索创新方法,建立和扩大理论基础,并提高评价领域的能力和基础设施。问责压力的增加导致了对教育项目和实践的严格评估。然而,严格的评估,如随机对照试验(RCT)是昂贵的,往往显示小的效果。即使是广泛采用的数字学习平台的随机对照试验也可能显示出令人失望的结果,这些结果对已经在教育领域根深蒂固的项目的后续采用几乎没有影响。需要新的方法来估计效果,并指出改善已采用的数字学习工具的结果的方法。随着平台目前的广泛使用,评估使用模式及其与结果关系的新方法既可以评估最大有效性,又可以提供提高有效性的手段。这项研究将开发对ST Math的评估,ST Math是一个K-8数字学习平台,旨在通过增强学生对数学概念的理解和数学学习的动机来增强他们的数学能力。通过投资评估创新来改善ST Math等数字学习平台,这些项目可以在每次迭代中以最大的效率覆盖大量儿童。开发自动化改进工具也可以提高数字学习平台的效率和功效。这项工作将通过北卡罗来纳州州立大学(NC State)的研究人员与非营利性MIND研究所(MIND)的程序开发人员在教育评估、教育数据挖掘和评估方面的专业知识合作来完成。该项目将探索新的、非侵入性的方法来确定ST数学数字学习环境的影响。它将使用过程数据推进形成性评估的分析基础,并建立算法,通过促进自动识别学习的可教时刻来改善STEM教学和学习。这项研究的变革潜力在于创造新的跨学科方法,不仅可用于评估影响,还可通过利用观察到的学生和教师的行为以及教育数据挖掘技术来改善STEM的教学和学习。具体而言,本研究将探索新的方法来检测,可视化,并评估学生?解谜和选谜行为。PI将评估检测到的模式是否由学生驱动?未来的能力,或可以用来预测他们的短期和长期的表现。通过将学生和教师的行为模式与重要的学习和动机结果联系起来,研究人员可以向教师推荐有希望的行动,并向开发人员推荐潜在的改进措施。这项工作不仅有可能改变ST Math平台的使用和成功,而且还可以创建可以改进并转移到其他平台的评估和实施的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paola Sztajn其他文献
Changes in Teachers’ Discourse About Students in a Professional Development on Learning Trajectories
教师关于学生学习轨迹专业发展的话语变化
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
P. Wilson;Paola Sztajn;Cyndi Edgington;Jared Webb;Marrielle Myers - 通讯作者:
Marrielle Myers
Teachers’ use of their mathematical knowledge for teaching in learning a mathematics learning trajectory
教师运用数学知识进行教学,学习数学学习轨迹
- DOI:
10.1007/s10857-013-9256-1 - 发表时间:
2014 - 期刊:
- 影响因子:2.1
- 作者:
P. Wilson;Paola Sztajn;Cyndi Edgington;J. Confrey - 通讯作者:
J. Confrey
From Implicit to Explicit: Articulating Equitable Learning Trajectories Based Instruction
从隐式到显式:阐明基于教学的公平学习轨迹
- DOI:
10.21423/jume-v8i2a280 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Marrielle Myers;Paola Sztajn;P. Wilson;C. Edgington - 通讯作者:
C. Edgington
Learning Trajectory Based Instruction
基于学习轨迹的教学
- DOI:
10.3102/0013189x12442801 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Paola Sztajn;J. Confrey;P. Wilson;C. Edgington - 通讯作者:
C. Edgington
Translating Learning Trajectories Into Useable Tools for Teachers
将学习轨迹转化为教师可用的工具
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Cyndi Edgington;P. Wilson;Paola Sztajn;Jared Webb - 通讯作者:
Jared Webb
Paola Sztajn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paola Sztajn', 18)}}的其他基金
Conference: Conversations Across Boundaries: Bringing PreK-2 Mathematics Experts Together
会议:跨界对话:将 PreK-2 数学专家聚集在一起
- 批准号:
2247546 - 财政年份:2023
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
Collaborative Research: All Included in Mathematics New Extensions Professional Development for K-2 Mathematics Teachers, Leaders, and Coaches
协作研究:全部包含在 K-2 数学教师、领导者和教练的数学新扩展专业发展中
- 批准号:
2200370 - 财政年份:2022
- 资助金额:
$ 79.98万 - 项目类别:
Continuing Grant
Collaborative Research: An impact study to examine the efficacy of a mathematics professional development program for elementary teachers
合作研究:一项影响研究,旨在检验小学教师数学专业发展计划的有效性
- 批准号:
1513155 - 财政年份:2015
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
Collaborative Research: Teaching Inquiry-oriented Mathematics: Establishing Supports
合作研究:探究性数学教学:建立支持
- 批准号:
1431641 - 财政年份:2014
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
RAPID-System-level Professional Development: Articulating Research Ideas that Support Implementation of PD Needed for Making the CCSS in Mathematics Reality for K-12 Teachers
快速系统级专业发展:阐明支持实施 PD 的研究理念,使 CCSS 成为 K-12 教师的数学现实
- 批准号:
1114933 - 财政年份:2011
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
Models of Professional Development for Mathematics Teachers
数学教师专业发展模式
- 批准号:
1019934 - 财政年份:2010
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
Contextual Research-Empirical--Building a Conceptual Model of Learning-Trajectory Based Instruction
情境研究-实证--构建基于学习轨迹的教学概念模型
- 批准号:
1008364 - 财政年份:2010
- 资助金额:
$ 79.98万 - 项目类别:
Continuing Grant
Project AIM: All Included in Mathematics
项目目标:全部包含在数学中
- 批准号:
1020177 - 财政年份:2010
- 资助金额:
$ 79.98万 - 项目类别:
Continuing Grant
相似海外基金
Exploring "Actionable Information" for Learning Improvement in Rural East Africa: A Positive Deviance Approach
探索东非农村地区学习改进的“可行信息”:积极偏差方法
- 批准号:
24K00390 - 财政年份:2024
- 资助金额:
$ 79.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Actionable deep learning under uncertainty for carbon-centric building operations
以碳为中心的建筑运营在不确定性下可行的深度学习
- 批准号:
2875807 - 财政年份:2023
- 资助金额:
$ 79.98万 - 项目类别:
Studentship
An actionable secretory program that drives tumor progression in a genetically defined subset of lung squamous carcinoma
一种可操作的分泌程序,可驱动基因定义的肺鳞癌亚群中的肿瘤进展
- 批准号:
10646979 - 财政年份:2023
- 资助金额:
$ 79.98万 - 项目类别:
Climate & Health Actionable Research and Translation Center
气候
- 批准号:
10835464 - 财政年份:2023
- 资助金额:
$ 79.98万 - 项目类别:
Dissecting the tumor cell-immune TME axis to identify therapeutically actionable vulnerabilities that potentiate immunotherapy in GBM
剖析肿瘤细胞免疫 TME 轴,以确定可增强 GBM 免疫治疗的治疗上可操作的漏洞
- 批准号:
10743534 - 财政年份:2023
- 资助金额:
$ 79.98万 - 项目类别:
Developing a Digital Platform for Providing Scalable and Actionable Feedback to Support Students' Development of Professional Skills
开发一个数字平台,提供可扩展且可操作的反馈,以支持学生的专业技能发展
- 批准号:
2235606 - 财政年份:2023
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
Forecast of Actionable Radiation Belt Scenarios
可操作辐射带情景的预测
- 批准号:
10045682 - 财政年份:2023
- 资助金额:
$ 79.98万 - 项目类别:
EU-Funded
Floe SalivaData-AI: Develop a machine learning platform which personalises actionable health insight reports from consumer salivary biomarkers.
Floe SalivaData-AI:开发一个机器学习平台,根据消费者唾液生物标记物提供个性化的可操作健康洞察报告。
- 批准号:
10057341 - 财政年份:2023
- 资助金额:
$ 79.98万 - 项目类别:
Collaborative R&D
Measurement Led Actionable Building Diagnostics
测量引导可行的建筑诊断
- 批准号:
10075160 - 财政年份:2023
- 资助金额:
$ 79.98万 - 项目类别:
Collaborative R&D
Harvesting Actionable Results for Learning and Instruction: A Novel Mixed Methods Approach to Extracting and Validating Information from Diagnostic Assessment
收获可操作的学习和教学结果:一种从诊断评估中提取和验证信息的新型混合方法
- 批准号:
2300382 - 财政年份:2023
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant














{{item.name}}会员




