CPS:GOALI:Synergy: Maneuver and Data Optimization for High Confidence Testing of Future Automotive Cyberphysical Systems
CPS:GOALI:Synergy:未来汽车网络物理系统高可信度测试的机动和数据优化
基本信息
- 批准号:1544844
- 负责人:
- 金额:$ 77.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project addresses urgent challenges in high confidence validation and verification of automotive vehicles due to on-going and anticipated introduction of advanced, connected and autonomous vehicles into mass production. Since such vehicles operate across both physical and cyber domains, faults can occur in traditional physical components, in cyber components (i.e., algorithms, processors, networks, etc.), or in both. Thus, advanced vehicles need to be tested for both physical and cyber-related fault conditions. The goal of this project is to develop theory, methods, and novel tools for generating and optimizing test trajectories and data inputs that can uncover both physical and cyber faults of future automotive vehicles. The level of vehicle reliability and safety achieved for current vehicles is remarkable considering their mass production, low cost, and wide range of operating conditions. If successful, the research advances made in this project will enable achieving similar levels of reliability and safety for future vehicles relying on advanced driver assistance technologies, connectivity and autonomy. The project will advance the field of cyber-physical systems, in general, and their lifecycle management, in particular. The validation and verification theory and methodology for cyberphysical systems will be expanded for uncovering anomalies and faults, especially using comprehensive case-based and optimization-based techniques for test scenario generation. The theoretical advances and case studies will contribute to the state-of-the-art in optimal control theory, game theory, information theory, data collection and processing, autonomous and connected vehicles, and automotive control. Sampling-based vehicle data acquisition and vehicle-aware data management strategies will be developed which can be applied more broadly, e.g., to cloud-based vehicle prognostics / conditional maintenance and mobile health-monitoring devices. Finally, approaches for efficient on-board data collection and aggregation will be implemented in a Cyber-physical system (CPS) Black Box prototype. The development of a vehicle-aware data management system (VDMS) will be pursued, leading to optimized use of data mining and compression inside the CPS Black Box to aggressively reduce the communication and computational costs. Synergistically with theoretical and methodological advances, automotive case studies will be undertaken with both realistic simulations and real experiments in collaboration with an industrial partner (AVL).
该项目解决了由于正在进行和预期的先进、联网和自动驾驶汽车的大规模生产而在汽车高置信度验证和验证方面面临的紧迫挑战。 由于这样的交通工具跨物理域和网络域两者操作,因此故障可能发生在传统物理组件、网络组件(即,算法、处理器、网络等),或者两者都有。 因此,先进的车辆需要测试物理和网络相关的故障条件。该项目的目标是开发理论、方法和新工具,用于生成和优化测试轨迹和数据输入,从而发现未来汽车的物理和网络故障。 考虑到其大规模生产、低成本和广泛的操作条件,当前车辆实现的车辆可靠性和安全性水平是显著的。 如果成功,该项目的研究进展将使未来车辆依靠先进的驾驶员辅助技术,连接性和自主性实现类似的可靠性和安全性水平。该项目将推进网络物理系统领域,特别是其生命周期管理。确认和验证fi将扩展信息物理系统的阳离子理论和方法,以发现异常和故障,特别是使用基于案例和基于优化的综合技术生成测试场景。 理论进展和案例研究将有助于最优控制理论,博弈论,信息论,数据收集和处理,自动驾驶和联网车辆以及汽车控制的最新发展。将开发基于采样的车辆数据采集和车辆感知数据管理策略,这些策略可以更广泛地应用,例如,到基于云的车辆性能/条件维护和移动的健康监测设备。 最后,有效的机载数据收集和汇总方法将在网络物理系统(CPS)黑匣子原型中实施。 将继续开发车辆感知数据管理系统(VDMS),从而优化CPS黑匣子内的数据挖掘和压缩,以大幅降低通信和计算成本。与理论和方法的进步协同,汽车案例研究将与工业合作伙伴(AVL)合作进行逼真的模拟和真实的实验。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detection-averse optimal and receding-horizon control for Markov decision processes
- DOI:10.1016/j.automatica.2020.109278
- 发表时间:2019-08
- 期刊:
- 影响因子:0
- 作者:Nan I. Li;I. Kolmanovsky;A. Girard
- 通讯作者:Nan I. Li;I. Kolmanovsky;A. Girard
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilya Kolmanovsky其他文献
On Control of a Partial Differential Equation Arising in the Study of Fuel Injection Systems
- DOI:
10.1016/s1474-6670(17)35392-2 - 发表时间:
2001-07-01 - 期刊:
- 影响因子:
- 作者:
Ilya Kolmanovsky;Michael P. Polis;Irina Siverguina - 通讯作者:
Irina Siverguina
Inexact log-domain interior-point methods for quadratic programming
- DOI:
10.1007/s10589-024-00610-7 - 发表时间:
2024-09-28 - 期刊:
- 影响因子:2.000
- 作者:
Jordan Leung;Frank Permenter;Ilya Kolmanovsky - 通讯作者:
Ilya Kolmanovsky
Best interpolation in a strip II: Reduction to unconstrained convex optimization
- DOI:
10.1007/bf00248266 - 发表时间:
1996-05-01 - 期刊:
- 影响因子:2.000
- 作者:
Asen L. Dontchev;Ilya Kolmanovsky - 通讯作者:
Ilya Kolmanovsky
Iteration governor for suboptimal MPC with input constraints
- DOI:
10.1016/j.sysconle.2024.105962 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Jordan Leung;Ilya Kolmanovsky - 通讯作者:
Ilya Kolmanovsky
Constrained control of free piston engine generator based on implicit reference governor
- DOI:
10.1007/s11432-017-9337-1 - 发表时间:
2018-05-31 - 期刊:
- 影响因子:7.600
- 作者:
Xun Gong;Ilya Kolmanovsky;Emanuele Garone;Kevin Zaseck;Hong Chen - 通讯作者:
Hong Chen
Ilya Kolmanovsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilya Kolmanovsky', 18)}}的其他基金
Conference: 2023 Midwest Optimization Meeting
会议:2023年中西部优化会议
- 批准号:
2323340 - 财政年份:2023
- 资助金额:
$ 77.5万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Mitigation strategies for enhancing performance while maintaining viability in cyber-physical systems
CPS:中:协作研究:在保持网络物理系统可行性的同时提高性能的缓解策略
- 批准号:
1931738 - 财政年份:2019
- 资助金额:
$ 77.5万 - 项目类别:
Standard Grant
Collaborative Research: Real-Time Iteration Governor for Constrained Nonlinear Model Predictive Control
协作研究:约束非线性模型预测控制的实时迭代调节器
- 批准号:
1904394 - 财政年份:2019
- 资助金额:
$ 77.5万 - 项目类别:
Standard Grant
Enhanced Numerical Methods for Constrained Nonlinear Model Predictive Control
约束非线性模型预测控制的增强数值方法
- 批准号:
1562209 - 财政年份:2016
- 资助金额:
$ 77.5万 - 项目类别:
Standard Grant
EAGER: DG-SLAM: Differential Geometric Simultaneous Localization and Mapping
EAGER:DG-SLAM:差分几何同步定位和建图
- 批准号:
1550103 - 财政年份:2015
- 资助金额:
$ 77.5万 - 项目类别:
Standard Grant
Drift Counteraction Control: Theory and Applications
漂移抵消控制:理论与应用
- 批准号:
1404814 - 财政年份:2014
- 资助金额:
$ 77.5万 - 项目类别:
Standard Grant
Reference And Extended Command Governors for Constrained Control: Theory and Applications
用于约束控制的参考和扩展命令调速器:理论与应用
- 批准号:
1130160 - 财政年份:2011
- 资助金额:
$ 77.5万 - 项目类别:
Standard Grant
相似海外基金
GOALI: Understanding granulation using microbial resource management for the broader application of granular technology
目标:利用微生物资源管理了解颗粒化,以实现颗粒技术的更广泛应用
- 批准号:
2227366 - 财政年份:2024
- 资助金额:
$ 77.5万 - 项目类别:
Standard Grant
GOALI: Development of Next Generation MXene-based Li-S Batteries with Practical Operating Temperatures
GOALI:开发具有实用工作温度的下一代 MXene 基锂硫电池
- 批准号:
2427203 - 财政年份:2024
- 资助金额:
$ 77.5万 - 项目类别:
Standard Grant
GOALI: Understanding Tribological Properties of Thermally-Synthesized Carbon
目标:了解热合成碳的摩擦学特性
- 批准号:
2315343 - 财政年份:2024
- 资助金额:
$ 77.5万 - 项目类别:
Standard Grant
GOALI: Understanding the Physical Mechanisms of Distortion and Controlling its Effects in Sintering-based Additive Manufacturing Processes
目标:了解变形的物理机制并控制其在基于烧结的增材制造工艺中的影响
- 批准号:
2328678 - 财政年份:2024
- 资助金额:
$ 77.5万 - 项目类别:
Standard Grant
GOALI: Integrated Design and Operability Optimization of Industrial-Scale Modular Intensified Systems
GOALI:工业规模模块化强化系统的集成设计和可操作性优化
- 批准号:
2401564 - 财政年份:2024
- 资助金额:
$ 77.5万 - 项目类别:
Standard Grant
CPS: Medium: GOALI: Enabling Safe Innovation for Autonomy: Making Publish/Subscribe Really Real-Time
CPS:中:GOALI:实现自主安全创新:使发布/订阅真正实时
- 批准号:
2333120 - 财政年份:2024
- 资助金额:
$ 77.5万 - 项目类别:
Standard Grant
GOALI: Fundamental Investigation of Constrained Cutting for High Performance Machining of Difficult-to-Cut Materials
GOALI:难切削材料高性能加工约束切削的基础研究
- 批准号:
2323120 - 财政年份:2024
- 资助金额:
$ 77.5万 - 项目类别:
Standard Grant
GOALI: Frameworks: At-Scale Heterogeneous Data based Adaptive Development Platform for Machine-Learning Models for Material and Chemical Discovery
GOALI:框架:基于大规模异构数据的自适应开发平台,用于材料和化学发现的机器学习模型
- 批准号:
2311632 - 财政年份:2023
- 资助金额:
$ 77.5万 - 项目类别:
Standard Grant
GOALI: ASCENT: Online Stability Assessment, Flexibility, and Enhancement of IBR-dominated Power Systems
目标:ASCENT:IBR 主导电力系统的在线稳定性评估、灵活性和增强
- 批准号:
2328248 - 财政年份:2023
- 资助金额:
$ 77.5万 - 项目类别:
Standard Grant
LEAP-HI: GOALI: Accelerating Design for Additive Manufacturing of Smart Multimaterial Devices
LEAP-HI:GOALI:加速智能多材料设备增材制造的设计
- 批准号:
2401218 - 财政年份:2023
- 资助金额:
$ 77.5万 - 项目类别:
Continuing Grant