CPS: Medium: Collaborative Research: Mitigation strategies for enhancing performance while maintaining viability in cyber-physical systems
CPS:中:协作研究:在保持网络物理系统可行性的同时提高性能的缓解策略
基本信息
- 批准号:1931738
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Complex cyber-physical systems (CPS) that operate in dynamic and uncertain environments will inevitably encounter unanticipated situations during their operation. Examples range from naturally occurring faults in both the cyber and physical components to attacks launched by malicious entities with the purpose of disrupting normal operations. As infrastructures, e.g. energy, transportation, industrial systems and built environments, are getting smarter, the chance of a fault or attack increases. When this happens, it is essential that system behavior remains viable, i.e., it does not violate pre-specified operating constraints on run-time behavior. Preserving safety, for instance, is of paramount importance to avoid damage and possible loss of life. This project will develop strategies for mitigating the effects of such unanticipated situations, that seek to optimize for performance (measured by multiple metrics such as cost, efficiency, accuracy, etc.) without compromising viability. The emphasis will be on the automotive application domain, given the upcoming revolution brought by innovations such as vehicle-to-vehicle (V2V), vehicle to infrastructure (V2I) communication and autonomous driving, and because of the safety-criticality of the transportation infrastructure. To ground our research on relevant problems, we will engage industrial partners. The outcomes of the project will be validated upon test scenarios drawn from the automotive industry. Fundamental issues arising when safety-critical CPS operate in uncertain environments will be addressed, with the objective of obtaining a better understanding of, and developing optimal or near-optimal strategies for dealing with, emergent problems that arise from the interaction of resource-allocation and control strategies in such systems. One of the novelties of the technical approach adopted in this project is to closely integrate three different CPS perspectives control theory, automotive & aerospace application domain-knowledge, and real-time resource management & scheduling in order to develop run-time mitigation strategies for complex CPS's operating in dynamic and uncertain environments, and exposed to a variety of faults. Such an integrated approach will allow for the identification of emergent problems that arise from the interaction of resource-allocation and control algorithms, that may otherwise remain undiscovered if the control and resource-allocation aspects were considered separately.The general design-time and run-time tools for creating resilient CPSs will be guided by the implementation and evaluation of the research in simulation and on laboratory test-beds upon three applications from the automotive domain: fault resilience for variable-valve internal combustion engines; fail-safe energy management for hybrid-electric vehicles; and robust sensor management for autonomous vehicles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
运行在动态和不确定环境中的复杂网络物理系统在运行过程中不可避免地会遇到意想不到的情况。例如,从网络和物理组件中自然发生的故障到恶意实体发起的旨在扰乱正常运营的攻击。随着能源、交通、工业系统和建筑环境等基础设施变得越来越智能,发生故障或攻击的可能性也增加了。当这种情况发生时,至关重要的是系统行为保持可行,即它不违反对运行时行为的预先指定的操作约束。例如,保护安全对于避免损坏和可能的生命损失至关重要。该项目将制定策略,以减轻此类意外情况的影响,寻求优化性能(通过成本、效率、准确性等多个指标进行衡量)。而不会影响生存能力。重点将放在汽车应用领域,因为车辆到车辆(V2V)、车辆到基础设施(V2I)通信和自动驾驶等创新带来的即将到来的革命,以及交通基础设施的安全关键。为了使我们的研究立足于相关问题,我们将邀请行业合作伙伴参与。该项目的结果将根据来自汽车行业的测试场景进行验证。将解决安全关键CP在不确定环境中运行时出现的基本问题,目的是更好地了解并制定最优或接近最优的战略,以处理此类系统中资源分配和控制战略相互作用所产生的紧急问题。本项目所采用的技术方法的新颖性之一是将控制理论、汽车与航天应用领域知识和实时资源管理与调度这三个不同的CPS视角紧密结合起来,以开发针对复杂CPS在动态和不确定环境中运行并暴露于各种故障中的运行时缓解策略。这种综合方法将能够识别资源分配和控制算法相互作用产生的紧急问题,否则,如果单独考虑控制和资源分配方面,这些问题可能仍未被发现。创建弹性CPSS的一般设计时和运行时工具将以模拟和实验室试验台上的研究的实施和评估为指导,这些研究来自汽车领域的三个应用:可变气门内燃机的故障弹性;混合动力汽车的故障安全能量管理;这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Implementing Optimization-Based Control Tasks in Cyber-Physical Systems With Limited Computing Capacity
在计算能力有限的信息物理系统中实现基于优化的控制任务
- DOI:10.1109/caadcps56132.2022.00009
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Hosseinzadeh, Mehdi;Sinopoli, Bruno;Kolmanovsky, Ilya;Baruah, Sanjoy
- 通讯作者:Baruah, Sanjoy
Stochastic Drift Counteraction Optimal Control of a Fuel Cell-Powered Small Unmanned Aerial Vehicle
- DOI:10.3390/en14051304
- 发表时间:2021-02
- 期刊:
- 影响因子:3.2
- 作者:Jiadi Zhang;I. Kolmanovsky;M. Amini
- 通讯作者:Jiadi Zhang;I. Kolmanovsky;M. Amini
Model-Predictive Spiral and Spin Upset Recovery Control for the Generic Transport Model Simulation⋆
通用输运模型模拟的模型预测螺旋和自旋翻转恢复控制–
- DOI:10.1109/ccta41146.2020.9206158
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Cunis, Torbjorn;Liao-McPherson, Dominic;Kolmanovsky, Ilya;Burlion, Laurent
- 通讯作者:Burlion, Laurent
Set-Theoretic Failure Mode Reconfiguration for Stuck Actuators
卡住执行器的集合理论故障模式重新配置
- DOI:10.1109/lcsys.2021.3092953
- 发表时间:2022
- 期刊:
- 影响因子:3
- 作者:Li, Huayi;Kolmanovsky, Ilya;Girard, Anouck
- 通讯作者:Girard, Anouck
A Failure Mode Reconfiguration Strategy Based on Constraint Admissible and Recoverable Sets
基于约束允许和可恢复集的故障模式重构策略
- DOI:10.23919/acc50511.2021.9482887
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Li, Huayi;Kolmanovsky, Ilya;Girard, Anouck
- 通讯作者:Girard, Anouck
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilya Kolmanovsky其他文献
On Control of a Partial Differential Equation Arising in the Study of Fuel Injection Systems
- DOI:
10.1016/s1474-6670(17)35392-2 - 发表时间:
2001-07-01 - 期刊:
- 影响因子:
- 作者:
Ilya Kolmanovsky;Michael P. Polis;Irina Siverguina - 通讯作者:
Irina Siverguina
Inexact log-domain interior-point methods for quadratic programming
- DOI:
10.1007/s10589-024-00610-7 - 发表时间:
2024-09-28 - 期刊:
- 影响因子:2.000
- 作者:
Jordan Leung;Frank Permenter;Ilya Kolmanovsky - 通讯作者:
Ilya Kolmanovsky
Best interpolation in a strip II: Reduction to unconstrained convex optimization
- DOI:
10.1007/bf00248266 - 发表时间:
1996-05-01 - 期刊:
- 影响因子:2.000
- 作者:
Asen L. Dontchev;Ilya Kolmanovsky - 通讯作者:
Ilya Kolmanovsky
Iteration governor for suboptimal MPC with input constraints
- DOI:
10.1016/j.sysconle.2024.105962 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Jordan Leung;Ilya Kolmanovsky - 通讯作者:
Ilya Kolmanovsky
Constrained control of free piston engine generator based on implicit reference governor
- DOI:
10.1007/s11432-017-9337-1 - 发表时间:
2018-05-31 - 期刊:
- 影响因子:7.600
- 作者:
Xun Gong;Ilya Kolmanovsky;Emanuele Garone;Kevin Zaseck;Hong Chen - 通讯作者:
Hong Chen
Ilya Kolmanovsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilya Kolmanovsky', 18)}}的其他基金
Conference: 2023 Midwest Optimization Meeting
会议:2023年中西部优化会议
- 批准号:
2323340 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Real-Time Iteration Governor for Constrained Nonlinear Model Predictive Control
协作研究:约束非线性模型预测控制的实时迭代调节器
- 批准号:
1904394 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Enhanced Numerical Methods for Constrained Nonlinear Model Predictive Control
约束非线性模型预测控制的增强数值方法
- 批准号:
1562209 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CPS:GOALI:Synergy: Maneuver and Data Optimization for High Confidence Testing of Future Automotive Cyberphysical Systems
CPS:GOALI:Synergy:未来汽车网络物理系统高可信度测试的机动和数据优化
- 批准号:
1544844 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
EAGER: DG-SLAM: Differential Geometric Simultaneous Localization and Mapping
EAGER:DG-SLAM:差分几何同步定位和建图
- 批准号:
1550103 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Drift Counteraction Control: Theory and Applications
漂移抵消控制:理论与应用
- 批准号:
1404814 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Reference And Extended Command Governors for Constrained Control: Theory and Applications
用于约束控制的参考和扩展命令调速器:理论与应用
- 批准号:
1130160 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
- 批准号:
2333980 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
- 批准号:
2401007 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
- 批准号:
2235231 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223987 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
- 批准号:
2305882 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
- 批准号:
2241796 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant