CPS: Synergy: Collaborative Research: Adaptive Intelligence for Cyber-Physical Automotive Active Safety - System Design and Evaluation
CPS:协同:协作研究:网络物理汽车主动安全的自适应智能 - 系统设计和评估
基本信息
- 批准号:1545089
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The automotive industry finds itself at a cross-roads. Current advances in MEMS sensor technology, the emergence of embedded control software, the rapid progress in computer technology, digital image processing, machine learning and control algorithms, along with an ever increasing investment in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) technologies, are about to revolutionize the way we use vehicles and commute in everyday life. Automotive active safety systems, in particular, have been used with enormous success in the past 50 years and have helped keep traffic accidents in check. Still, more than 30,000 deaths and 2,000,000 injuries occur each year in the US alone, and many more worldwide. The impact of traffic accidents on the economy is estimated to be as high as $300B/yr in the US alone. Further improvement in terms of driving safety (and comfort) necessitates that the next generation of active safety systems are more proactive (as opposed to reactive) and can comprehend and interpret driver intent. Future active safety systems will have to account for the diversity of drivers' skills, the behavior of drivers in traffic, and the overall traffic conditions.This research aims at improving the current capabilities of automotive active safety control systems (ASCS) by taking into account the interactions between the driver, the vehicle, the ASCS and the environment. Beyond solving a fundamental problem in automotive industry, this research will have ramifications in other cyber-physical domains, where humans manually control vehicles or equipment including: flying, operation of heavy machinery, mining, tele-robotics, and robotic medicine. Making autonomous/automated systems that feel and behave "naturally" to human operators is not always easy. As these systems and machines participate more in everyday interactions with humans, the need to make them operate in a predictable manner is more urgent than ever.To achieve the goals of the proposed research, this project will use the estimation of the driver's cognitive state to adapt the ASCS accordingly, in order to achieve a seamless operation with the driver. Specifically, new methodologies will be developed to infer long-term and short-term behavior of drivers via the use of Bayesian networks and neuromorphic algorithms to estimate the driver's skills and current state of attention from eye movement data, together with dynamic motion cues obtained from steering and pedal inputs. This information will be injected into the ASCS operation in order to enhance its performance by taking advantage of recent results from the theory of adaptive and real-time, model-predictive optimal control. The correct level of autonomy and workload distribution between the driver and ASCS will ensure that no conflicts arise between the driver and the control system, and the safety and passenger comfort are not compromised. A comprehensive plan will be used to test and validate the developed theory by collecting measurements from several human subjects while operating a virtual reality-driving simulator.
汽车行业正处于十字路口。当前MEMS传感器技术的进步、嵌入式控制软件的出现、计算机技术、数字图像处理、机器学习和控制算法的快速发展,以及沿着对车辆到车辆(V2 V)和车辆到基础设施(V2 I)技术的不断增加的投资,即将彻底改变我们在日常生活中使用车辆和通勤的方式。特别是汽车主动安全系统,在过去的50年里取得了巨大的成功,并帮助控制了交通事故。尽管如此,每年仅在美国就有超过30,000人死亡和2,000,000人受伤,世界各地的人数更多。据估计,仅在美国,交通事故对经济的影响就高达每年3000亿美元。驾驶安全性(和舒适性)的进一步改善需要下一代主动安全系统更加主动(而不是被动),并且可以理解和解释驾驶员的意图。未来的主动安全系统将必须考虑驾驶员技能的多样性,驾驶员在交通中的行为,以及整体的交通条件。本研究旨在通过考虑驾驶员,车辆,ASCS和环境之间的相互作用来提高当前汽车主动安全控制系统(ASCS)的能力。除了解决汽车行业的基本问题外,这项研究还将在其他网络物理领域产生影响,人类手动控制车辆或设备,包括:飞行,重型机械操作,采矿,远程机器人和机器人医疗。使自主/自动化系统的感觉和行为对人类操作员来说“自然”并不总是那么容易。随着这些系统和机器越来越多地参与到与人类的日常互动中,使它们以可预测的方式运行的需求比以往任何时候都更加迫切。为了实现拟议研究的目标,本项目将使用驾驶员认知状态的估计来相应地调整ASCS,以实现与驾驶员的无缝操作。具体而言,将开发新的方法来推断长期和短期的行为,通过使用贝叶斯网络和神经形态算法来估计驾驶员的技能和当前状态的注意力从眼球运动数据,以及从转向和踏板输入获得的动态运动线索。这些信息将被注入ASCS操作,以提高其性能,利用最近的结果,从理论的自适应和实时,模型预测最佳控制。驾驶员和ASCS之间正确的自主性和工作量分配将确保驾驶员和控制系统之间不会发生冲突,并且不会影响安全性和乘客舒适性。一个全面的计划将被用来测试和验证开发的理论,通过收集测量从几个人类受试者,同时操作虚拟现实驾驶模拟器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laurent Itti其他文献
Saliency-based of spontaneous saccades in monkeys with unilateral lesion of primary visual cortex.
基于显着性的初级视觉皮层单侧损伤的猴子自发眼跳。
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Laurent Itti;Masatoshi Yoshida;David Berg;Takuro Ikeda;Rikako Kato;Kana Tkaura;Tadashi Isa - 通讯作者:
Tadashi Isa
A neural model combining attentional orienting to object recognition: preliminary explorations on the interplay between where and what
注意力定向与物体识别相结合的神经模型:对地点和内容之间相互作用的初步探索
- DOI:
10.1109/iembs.2001.1019059 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Florence Miau;Laurent Itti - 通讯作者:
Laurent Itti
Traces of Intellectual Working Memory Tasks on Visuospatial Short-Term Memory
智力工作记忆任务对视觉空间短期记忆的影响
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Nader Noori;Laurent Itti - 通讯作者:
Laurent Itti
Saliency-based guidance of spontaneous saccades in monkeys with unilateral lesion of primary visual cortex
基于显着性的初级视觉皮层单侧损伤猴自发性眼跳引导
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Laurent Itti;Masatoshi Yoshida;David Berg;Takuro Ikeda;Rikako Kato;Kana Takaura;Tadashi Isa - 通讯作者:
Tadashi Isa
Investigation of spontaneous saccades based on the saliency model in monkeys with unilateral lesion of primary visual cortex
基于显着性模型的单侧初级视觉皮层损伤猴自发性眼跳研究
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Laurent Itti;Masatoshi Yoshida;David Berg;Takuro Ikeda;Rikako Kato;Kana Takaura;Tadashi Isa - 通讯作者:
Tadashi Isa
Laurent Itti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laurent Itti', 18)}}的其他基金
Collaborative Research: Visual Cortex on Silicon
合作研究:硅上视觉皮层
- 批准号:
1317433 - 财政年份:2013
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
GOALI/Collaborative Research: Advanced Driver Assistance and Active Safety Systems through Driver's Controllability Augmentation and Adaptation
GOALI/合作研究:通过驾驶员可控性增强和适应实现高级驾驶员辅助和主动安全系统
- 批准号:
1235539 - 财政年份:2012
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Neural Basis of Active Perception in Natural Environment
自然环境中主动感知的神经基础
- 批准号:
0827764 - 财政年份:2008
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
CRCNS data sharing: Human eye movements under natural free viewing
CRCNS数据共享:自然自由观看下的人眼运动
- 批准号:
0747477 - 财政年份:2007
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
CRCNS: Collaborative Research: Characterizing Bayesian Surprise in Humans and Monkeys
CRCNS:合作研究:描述人类和猴子的贝叶斯惊讶
- 批准号:
0515261 - 财政年份:2005
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似海外基金
CPS: Synergy: Collaborative Research: Towards Effective and Efficient Sensing-Motion Co-Design of Swarming Cyber-Physical Systems
CPS:协同:协作研究:实现集群网络物理系统的有效和高效的传感-运动协同设计
- 批准号:
1936599 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: DEUS: Distributed, Efficient, Ubiquitous and Secure Data Delivery Using Autonomous Underwater Vehicles
CPS:协同:协作研究:DEUS:使用自主水下航行器进行分布式、高效、无处不在和安全的数据传输
- 批准号:
1853257 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: TickTalk: Timing API for Federated Cyberphysical Systems
CPS:协同:协作研究:TickTalk:联合网络物理系统的计时 API
- 批准号:
1645578 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: TickTalk: Timing API for Federated Cyberphysical Systems
CPS:协同:协作研究:TickTalk:联合网络物理系统的计时 API
- 批准号:
1646235 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Control of Vehicular Traffic Flow via Low Density Autonomous Vehicles
CPS:协同:协作研究:通过低密度自动驾驶车辆控制车流
- 批准号:
1854321 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Synergy: Augmented reality for control of reservation-based intersections with mixed autonomous-non autonomous flows
CPS:中:协作研究:协同作用:用于控制具有混合自主-非自主流的基于预留的交叉口的增强现实
- 批准号:
1739964 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
CPS: Synergy: Collaborative Research: Foundations of Secure Cyber-Physical Systems of Systems
CPS:协同:协作研究:安全网络物理系统的基础
- 批准号:
1901728 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
CPS: TTP Option: Synergy: Collaborative Research: An Executable Distributed Medical Best Practice Guidance (EMBG) System for End-to-End Emergency Care from Rural to Regional Center
CPS:TTP 选项:协同:协作研究:用于从农村到区域中心的端到端紧急护理的可执行分布式医疗最佳实践指导 (EMBG) 系统
- 批准号:
1842710 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
CPS: Synergy: Collaborative Research: MRI Powered & Guided Tetherless Effectors for Localized Therapeutic Interventions
CPS:协同作用:协作研究:MRI 驱动
- 批准号:
1646566 - 财政年份:2017
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Synergy: Collaborative: CPS-Security: End-to-End Security for the Internet of Things
协同:协作:CPS-安全:物联网的端到端安全
- 批准号:
1822332 - 财政年份:2017
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant