I-Corps: Bio-Inspired Flow Field Designs for Polymer Electrolyte Membrane (PEM) Fuel Cells

I-Corps:聚合物电解质膜 (PEM) 燃料电池的仿生流场设计

基本信息

  • 批准号:
    1545863
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2016-03-31
  • 项目状态:
    已结题

项目摘要

Fuel cells are a promising technology to reduce dependence on fossil fuel and reduce pollution while increasing energy efficiency. However, fuel cell technology is not fully mature and still faces several technical challenges. By mimicking the designs of natural flow fields found in leaves and lungs, which have evolved to distribute nutrients efficiently, bio-inspired flow fields have been designed and tested at Missouri S&T. By reducing the concentration losses common to existing flow field designs, bio-inspired flow fields lead to improved fuel cell performance. Such flow technologies have been demonstrated to substantially increase the energy efficiency of fuel cells, which are already more efficient compared to conventional energy conversion devices such as internal combustion engines. This would result in lower energy consumption and money savings. Furthermore, this would significantly reduce greenhouse gas emissions and other pollutants such as oxides of nitrogen. The challenges related to the practical aspects for commercialization of this technology will be explored during the course of the I-Corps program. It is expected that the team will be able to pursue a technology transfer after discovery of potential customers is conducted.Biological flow fields, which are found in leaves and lungs, have evolved to effectively distribute nutrients while minimizing the amount of biological work needed. Bio-inspired designs for fuel cell flow fields mimic the design of natural flow fields. They are able to reduce the mass transport losses found in conventional flow fields that occur during the distribution of reactants and removal of products from fuel cells. This leads to a significant increase in the peak power density of fuel cells. Laboratory prototype testing results confirm simulation studies that bio-inspired flow fields are superior in reduction of transport losses and water removal compared to existing conventional flow field designs. By replacing the flow fields in commercially available fuel cell stacks with bio-inspired flow field designs, fuel cell products are expected to experience up to a 30% increase in peak power density. The NSF I-Corps team would like to explore the pathways towards the commercialization of bio-inspired flow field designs for poymer electrolyte membrane (PEM) fuel cells. The team will work with commercial fuel cell developers to overcome challenges related to the practical aspects for commercial adoption of the innovation and investigate the willingness and suitability of fuel cell developers to adopt the bio-inspired flow field designs. The team will do so by directly contacting companies, explaining the innovation, and demonstrating the results using a laboratory prototype. Bio-inspired flow fields represent a big step in fuel cell technology. They could end up being the best solution to reactant distribution in fuel cells and similar energy conversion devices. Fuel cells have a variety of niches in stationary and transportation applications. Improving the performance of fuel cells is critical to increasing the overall efficiency of the energy sector, reducing the dependence on fossil fuels, and reducing pollution. With the number of installed fuel cells growing each year, it is expected that such an improvement in flow field design will lead to broader adaptation of cleaner power applications.
燃料电池是一种很有前途的技术,可以减少对化石燃料的依赖,减少污染,同时提高能源效率。然而,燃料电池技术尚未完全成熟,仍然面临着一些技术挑战。通过模仿在树叶和肺中发现的自然流场的设计,生物启发流场已经在密苏里州ST设计和测试,这些流场已经进化到有效地分配营养物质。通过减少现有流场设计中常见的浓度损失,生物启发流场导致改进的燃料电池性能。这种流动技术已经被证明可以显著提高燃料电池的能量效率,与传统的能量转换装置如内燃机相比,燃料电池已经更有效。这将导致更低的能源消耗和节省资金。此外,这将大大减少温室气体排放和氮氧化物等其他污染物。在I-Corps计划的过程中,将探讨与这项技术商业化的实际方面有关的挑战。预计该团队将能够在发现潜在客户后进行技术转让。在树叶和肺部发现的生物流场已经发展到有效分配营养物质,同时最大限度地减少所需的生物工作量。燃料电池流场的生物启发设计模仿自然流场的设计。它们能够减少传统流场中在反应物分配和从燃料电池中去除产物期间发生的传质损失。这导致燃料电池的峰值功率密度显著增加。实验室原型测试结果证实了模拟研究,即与现有的传统流场设计相比,生物启发流场在减少输送损失和水去除方面具有上级优势。通过用生物启发的流场设计取代市售燃料电池堆中的流场,燃料电池产品的峰值功率密度预计将增加高达30%。NSF I-Corps团队希望探索聚合物电解质膜(PEM)燃料电池生物启发流场设计商业化的途径。该团队将与商业燃料电池开发商合作,克服与商业采用创新的实际方面相关的挑战,并调查燃料电池开发商采用生物启发流场设计的意愿和适用性。该团队将通过直接联系公司,解释创新,并使用实验室原型展示结果来实现这一目标。生物启发的流场代表了燃料电池技术的一大步。它们最终可能成为燃料电池和类似能量转换装置中反应物分布的最佳解决方案。燃料电池在固定和运输应用中具有各种各样的利基。提高燃料电池的性能对于提高能源部门的整体效率、减少对化石燃料的依赖和减少污染至关重要。随着安装的燃料电池的数量每年增长,预计流场设计的这种改进将导致更广泛的适应更清洁的电力应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Umit Koylu其他文献

Umit Koylu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Umit Koylu', 18)}}的其他基金

Soot Properties in Steady and Unsteady Non-Premixed Counterflow Flames
稳定和不稳定非预混逆流火焰中的烟灰特性
  • 批准号:
    0196011
  • 财政年份:
    2000
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Formation and Evolution of Soot Particles During Turbulent Nonpremixed Combustion
职业:湍流非预混燃烧过程中烟灰颗粒的形成和演化
  • 批准号:
    0196012
  • 财政年份:
    2000
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Formation and Evolution of Soot Particles During Turbulent Nonpremixed Combustion
职业:湍流非预混燃烧过程中烟灰颗粒的形成和演化
  • 批准号:
    9876475
  • 财政年份:
    1999
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Soot Properties in Steady and Unsteady Non-Premixed Counterflow Flames
稳定和不稳定非预混逆流火焰中的烟灰特性
  • 批准号:
    9711954
  • 财政年份:
    1997
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

骨胶原(Bio-Oss Collagen)联合龈下喷砂+骨皮质切开术治疗 根分叉病变的临床疗效研究
  • 批准号:
    2024JJ9542
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
智能双栅调控InSe Bio-FET可控构筑与原位细胞传感机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于通用型 M13-Bio 噬菌体信号放大的动态 光散射免疫传感检测平台的建立及机制研究
  • 批准号:
    Q24C200014
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
2D/2D BiO2-x/graphyne异质结光热活化过硫酸盐降解水体中抗生素的机理研究
  • 批准号:
    LY23E080003
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Z型异质结“(金属氧化物MOx@薄层碳TC)/BiO1-xCl”的可控构筑及其光催化性能的研究
  • 批准号:
    22005126
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
BIO促进脂肪来源干细胞修复急性心肌梗死的作用及机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
6-BIO 抗肝脏衰老的作用与作用机制研究
  • 批准号:
    19ZR1438800
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于MOFs热解构建薄层碳包覆的BiO1-xX基Z型异质结及其光催化水氧化苯制苯酚反应的研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
可回收MFe2O4/二维 (BiO)2CO3 复合纳米矿物材料光降解再生水中顽固型有机物机理
  • 批准号:
    41877481
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
  • 批准号:
    2344109
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
  • 批准号:
    2340799
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Bio-inspired Nanoparticles for Mechano-Regulation of Stem Cell Fate
用于干细胞命运机械调节的仿生纳米颗粒
  • 批准号:
    DP240102315
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Projects
PFI-TT: Bio-inspired enhancement of concrete for carbon sequestration and longevity
PFI-TT:仿生增强混凝土以实现碳封存和长寿
  • 批准号:
    2329856
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
  • 批准号:
    2344424
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Bio-inspired Solutions to Prevent Soil Erosion in Farmland and Scouring in Fluvial Regions
RII Track-4:NSF:防止农田水土流失和河流地区冲刷的仿生解决方案
  • 批准号:
    2327384
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Geometric and Electronic Contributions to Bio-inspired Reactivities of Heme-superoxide Intermediates
职业:几何和电子对血红素超氧化物中间体的仿生反应活性的贡献
  • 批准号:
    2422277
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
  • 批准号:
    2338171
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
NSF Convergence Accelerator Track M: Nature Inspired Bio-manufactured Terminal Hydroxylated Fatty Acid Copolyesters
NSF 融合加速器轨道 M:受自然启发的生物制造末端羟基化脂肪酸共聚酯
  • 批准号:
    2344366
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Toward energy-efficient bio-inspired magnonic processing with nanomagnetic arrays
职业:利用纳米磁性阵列实现节能的仿生磁力处理
  • 批准号:
    2339475
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了