BIGDATA: F: Scalable Bayes Uncertainty Quantification with Guarantees
BIGDATA:F:具有保证的可扩展贝叶斯不确定性量化
基本信息
- 批准号:1546130
- 负责人:
- 金额:$ 98.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-11-01 至 2020-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Increasing volume and variety of data opens opportunities, but much of these data are not carefully curated, leading to uncertainty. Data analysis techniques are needed that accurately characterize uncertainty. This project develops principled approaches to managing uncertainty, particularly through clustering and subsetting data, and then combining results from analysis of the subsets. Dividing data into smaller problems promises scalability to Big Data, while the ability to combine results in a theoretically sound manner manages the uncertainty inherent in large data collections.The key idea is that Wasserstein barycenter of subset posteriors can be used to efficiently perform posterior approximation. The project extends the theoretical understanding of Wasserstein barycenters, enhancing ability to model uncertainty. New mathematical tools are being developed to bound the accuracy of approximations in terms of the problem's size and nature, and computational time. The algorithms are evaluated on a rich variety of massive data sets, ranging from large-scale networks to biomedical data sets collecting huge numbers of biomarkers. In addition, the project provides interdisciplinary training to young talent in big data analytics to improve competitiveness of the workforce and increase the cohort of data science researchers.
不断增加的数据量和种类带来了机会,但这些数据中的许多没有经过仔细的管理,导致了不确定性。需要准确描述不确定性的数据分析技术。这个项目开发了管理不确定性的原则性方法,特别是通过对数据进行分类和子集划分,然后结合子集分析的结果。将数据分成更小的问题保证了大数据的可扩展性,而以理论上合理的方式组合结果的能力管理了大型数据收集所固有的不确定性。其关键思想是子集后验的Wasserstein重心可以有效地执行后验逼近。该项目扩展了对沃瑟斯坦重心的理论理解,增强了对不确定性进行建模的能力。正在开发新的数学工具,根据问题的大小和性质以及计算时间来限制近似的精度。这些算法在各种海量数据集上进行了评估,从大规模网络到收集大量生物标记物的生物医学数据集。此外,该项目还为大数据分析领域的年轻人才提供跨学科培训,以提高劳动力的竞争力,增加数据科学研究人员的队伍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Dunson其他文献
David Dunson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
- 批准号:
MR/Y011686/1 - 财政年份:2025
- 资助金额:
$ 98.59万 - 项目类别:
Fellowship
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
- 批准号:
10086990 - 财政年份:2024
- 资助金额:
$ 98.59万 - 项目类别:
Collaborative R&D
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
- 批准号:
2887634 - 财政年份:2024
- 资助金额:
$ 98.59万 - 项目类别:
Studentship
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
- 批准号:
2319913 - 财政年份:2024
- 资助金额:
$ 98.59万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 98.59万 - 项目类别:
Standard Grant
FAST CAR-T: Faster, Adaptive and Scalable Technologies For CAR-T Manufacture
FAST CAR-T:更快、自适应和可扩展的 CAR-T 制造技术
- 批准号:
EP/Z532770/1 - 财政年份:2024
- 资助金额:
$ 98.59万 - 项目类别:
Research Grant
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
- 批准号:
2340453 - 财政年份:2024
- 资助金额:
$ 98.59万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 98.59万 - 项目类别:
Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
- 批准号:
2332891 - 财政年份:2024
- 资助金额:
$ 98.59万 - 项目类别:
Standard Grant
SBIR Phase I: Scalable Magnetically-Geared Modular Space Manipulator for In-space Manufacturing and Active Debris Remediation Missions
SBIR 第一阶段:用于太空制造和主动碎片修复任务的可扩展磁力齿轮模块化空间操纵器
- 批准号:
2335583 - 财政年份:2024
- 资助金额:
$ 98.59万 - 项目类别:
Standard Grant














{{item.name}}会员




