BIGDATA: Collaborative Research: IA: F: Fractured Subsurface Characterization using High Performance Computing and Guided by Big Data
BIGDATA:协作研究:IA:F:使用高性能计算和大数据指导的断裂地下表征
基本信息
- 批准号:1546145
- 负责人:
- 金额:$ 31.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Natural fractures act as major heterogeneities in the subsurface that controls flow and transport of subsurface fluids and chemical species. Their importance cannot be underestimated, because their transmissivity may result in undesired migration during geologic sequestration of CO2, they strongly control heat recovery from geothermal reservoirs, and they may lead to induced seismicity due to fluid injection into the subsurface. Advanced computational methods are critical to design subsurface processes in fractured media for successful environmental and energy applications. This project will address the following key BIG data and computer science challenges: (1) Computation of seismic wave propagation in fractured media; (2) BIG DATA analytics for inferring fracture characteristics; (3) High Performance Computation of flow and transport in fractured media; and (4) Integration of data from disparate sources for risk assessment and decision-making. This will enable design of technologies for addressing key societal issues such as safe energy extraction from the surface, long-term sequestration of large volumes of greenhouse gases, and safe storage of nuclear waste. The project will provide interdisciplinary training for a team of graduate students and postdoctoral fellows. Outreach to high schools teachers and minorities through a planned workshop will inspire interest in environmental green-engineering, mathematics, and computational science. Numerous applications will benefit from this research, including Computer and Information Science and Engineering (CISE), Geosciences (GEO), and Mathematical and Physical Sciences (MPS).The proposed research will emphasize high performance computation (HPC) approaches for characterizing fractures using large subsurface seismic data sets, BIG data analytics for extraction of fracture related information from seismic inversion results and long-duration dynamic data, and advanced computational approaches for modeling flow, transport, and geomechanics in fractured subsurface systems. The specific objectives are to: Develop an efficient forward modeling algorithm for seismic wave propagation in fractured media using efficient computational schemes. Compute flow and transport in fractured media using an efficient computational scheme implemented on GPUs such as mimetic finite differences. Perform efficient multiphysics simulation of flow and geomechanics in fractured media. Integrate information from time-lapse seismic inversion and flow/transport simulation using novel statistical schemes. Joint inversion of seismic and fluid flow data and uncertainty quantification using efficient computational schemes. Develop and deploy a scalable hybrid-staging based substrate that can support targeted workflows using staging-based in-situ/in-transit approaches. Computational simulation is critical to design subsurface processes for successful environmental and energy applications. Project URL: http://csm.ices.utexas.edu/current-projects/
天然裂缝作为地下的主要非均质性,控制地下流体和化学物质的流动和运输。它们的重要性不能低估,因为它们的transmittance可能会导致不希望的迁移过程中的地质封存的二氧化碳,他们强烈地控制热回收从地热储层,他们可能会导致诱发地震活动由于流体注入地下。先进的计算方法是至关重要的,设计地下过程中成功的环境和能源应用的裂缝介质。该项目将解决以下关键的大数据和计算机科学挑战:(1)计算地震波在裂缝介质中的传播;(2)用于推断裂缝特征的大数据分析;(3)裂缝介质中流动和运输的高性能计算;以及(4)整合来自不同来源的数据进行风险评估和决策。这将有助于设计解决关键社会问题的技术,例如从地表安全提取能源,长期封存大量温室气体以及安全储存核废料。该项目将为一组研究生和博士后研究员提供跨学科培训。 通过计划中的研讨会向高中教师和少数民族进行宣传,将激发他们对环境绿色工程、数学和计算科学的兴趣。 许多应用将受益于这项研究,包括计算机和信息科学与工程(CISE),地球科学(GEO),数学和物理科学(MPS)。拟议的研究将强调高性能计算(HPC)方法,用于使用大型地下地震数据集表征裂缝,BIG数据分析,用于从地震反演结果和长时间动态数据中提取裂缝相关信息,以及用于模拟流动、运输和地下裂缝系统的地质力学。具体目标是:开发一个有效的正演模拟算法,地震波在裂缝介质中的传播,使用有效的计算方案。使用在GPU上实现的高效计算方案(如模拟有限差分)计算裂缝介质中的流动和输运。对裂隙介质中的流动和地质力学进行高效的多物理场模拟。使用新的统计方案整合时移地震反演和流动/输运模拟的信息。地震和流体流动数据的联合反演和使用有效计算方案的不确定性量化。开发和部署可扩展的基于混合分段的基底,该基底可支持使用基于分段的原位/在途方法的目标工作流。计算模拟对于设计成功的环境和能源应用的地下工艺至关重要。项目网址:http://csm.ices.utexas.edu/current-projects/
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Persistent Data Staging Services for Data Intensive In-situ Scientific Workflows
适用于数据密集型原位科学工作流程的持久数据暂存服务
- DOI:10.1145/2912152.2912157
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Romanus, Melissa;Klasky, Scott;Chang, Choong-Seock;Rodero, Ivan;Zhang, Fan;Jin, Tong;Sun, Qian;Bui, Hoang;Parashar, Manish;Choi, Jong
- 通讯作者:Choi, Jong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivan Rodero其他文献
Grid broker selection strategies using aggregated resource information
- DOI:
10.1016/j.future.2009.07.009 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Ivan Rodero;Francesc Guim;Julita Corbalan;Liana Fong;S. Masoud Sadjadi - 通讯作者:
S. Masoud Sadjadi
In-situ feature-based objects tracking for data-intensive scientific and enterprise analytics workflows
- DOI:
10.1007/s10586-014-0396-6 - 发表时间:
2014-08-22 - 期刊:
- 影响因子:4.100
- 作者:
Solomon Lasluisa;Fan Zhang;Tong Jin;Ivan Rodero;Hoang Bui;Manish Parashar - 通讯作者:
Manish Parashar
Ivan Rodero的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivan Rodero', 18)}}的其他基金
CIF21 DIBBs: EI: Virtual Data Collaboratory: A Regional Cyberinfrastructure for Collaborative Data Intensive Science
CIF21 DIBB:EI:虚拟数据协作:协作数据密集型科学的区域网络基础设施
- 批准号:
2220826 - 财政年份:2021
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Data: NSCI: HDR: GeoSCIFramework: Scalable Real-Time Streaming Analytics and Machine Learning for Geoscience and Hazards Research
协作研究:框架:数据:NSCI:HDR:GeoSCIFramework:用于地球科学和灾害研究的可扩展实时流分析和机器学习
- 批准号:
2219975 - 财政年份:2021
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Data: NSCI: HDR: GeoSCIFramework: Scalable Real-Time Streaming Analytics and Machine Learning for Geoscience and Hazards Research
协作研究:框架:数据:NSCI:HDR:GeoSCIFramework:用于地球科学和灾害研究的可扩展实时流分析和机器学习
- 批准号:
1835692 - 财政年份:2019
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
NSF Large Facilities Cyberinfrastructure Workshop
NSF 大型设施网络基础设施研讨会
- 批准号:
1742969 - 财政年份:2017
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
EAGER: Online Processing of Data in Large Facilities using National Advanced CyberInfrastructure
EAGER:使用国家先进网络基础设施在线处理大型设施中的数据
- 批准号:
1745246 - 财政年份:2017
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Cross-layer Application-Aware Resilience at Extreme Scale (CAARES)
SPX:协作研究:超大规模跨层应用程序感知弹性 (CAARES)
- 批准号:
1725649 - 财政年份:2017
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
CIF21 DIBBs: EI: Virtual Data Collaboratory: A Regional Cyberinfrastructure for Collaborative Data Intensive Science
CIF21 DIBB:EI:虚拟数据协作:协作数据密集型科学的区域网络基础设施
- 批准号:
1640834 - 财政年份:2016
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
CRII: CI: Exploring Advanced Cyber-Infrastructure Co-Design for Big Data Analytics
CRII:CI:探索大数据分析的高级网络基础设施协同设计
- 批准号:
1464317 - 财政年份:2015
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
相似海外基金
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
2308649 - 财政年份:2022
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
- 批准号:
2027516 - 财政年份:2020
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
- 批准号:
1934319 - 财政年份:2019
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
- 批准号:
1838022 - 财政年份:2019
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
- 批准号:
1926250 - 财政年份:2019
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
1947584 - 财政年份:2019
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
1837964 - 财政年份:2019
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
- 批准号:
1838222 - 财政年份:2019
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
- 批准号:
1838248 - 财政年份:2019
- 资助金额:
$ 31.46万 - 项目类别:
Standard Grant














{{item.name}}会员




