BigData:IA:Collaborative Research: TIMES: A tensor factorization platform for spatio-temporal data
BigData:IA:协作研究:TIMES:时空数据张量分解平台
基本信息
- 批准号:2034479
- 负责人:
- 金额:$ 75.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-16 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spatio-temporal analyses can enable many discoveries including reducing traffic congestion, identifying hotspot areas to deploy mobile clinics, and urban planning. Unfortunately, the data poses many computational challenges. Standard assumptions in machine learning and data mining algorithms are violated by the complex nature of spatio-temporal data. These include spatial and temporal correlation of observations, dynamic and abrupt changes in observations, variability in measurements with respect to length and frequency, and multi-sourced data that spans multiple sources of information. In recognition of these challenges, various efforts have been undertaken to develop specialized spatiotemporal models. Yet, to date, these algorithms are predominately designed to analyze small- to medium-sized datasets. The goal of this project is to develop a comprehensive computational tensor platform to perform automated, data-driven discovery from spatio-temporal data across a broad range of applications. The project also includes a set of integrated educational activities such as a Massive Open Online Course that covers cross-disciplinary topics at the confluence of computer science and geospatial applications, annual spatio-temporal data challenges and hackathons, and an annual event at the Atlanta Science Festival to create public awareness and encourage participation by women and minorities.The project will contain algorithmic innovations that reflect appropriate assumptions of spatio-temporal data without sacrificing real-time performance, computational scalability, and cross-site learning even under privacy constraints. The proposed platform will generalize tensor modeling to encompass the complex nature of spatio-temporal data including time irregularity, spatiotemporal correlations, and evolving distributions. It will enable the integration of multi-sourced data from heterogeneous sources to yield robust and cohesive learned patterns. The novel algorithms will also facilitate learning in decentralized settings while preserving privacy. The computational platform will contain interchangeable modules that can adapt to new spatio-temporal settings and incorporate additional contextual information. The accompanying suite of algorithms will enable predictive learning, pattern mining, and change detection from large-sized spatio-temporal data. The broad applicability of the project will be demonstrated on a diverse range of data including urban transportation services, real estate market transactions, and population health. The algorithmic innovations introduced can be used to scale other machine learning models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
时空分析可以使许多发现,包括减少交通拥堵,确定部署移动诊所的热点地区以及城市规划。不幸的是,数据带来了许多计算挑战。 Standard assumptions in machine learning and data mining algorithms are violated by the complex nature of spatio-temporal data. 这些包括观测值的空间和时间相关性,观测值的动态和突然变化,相对于长度和频率的测量可变性以及跨越多个信息来源的多源数据。为了认识到这些挑战,已经采取了各种努力来开发专业的时空模型。然而,迄今为止,这些算法主要设计用于分析中小型数据集。该项目的目的是开发一个全面的计算张量平台,以从广泛的应用程序中从时空数据中执行自动数据驱动的发现。该项目还包括一系列综合的教育活动,例如大规模开放的在线课程,该课程涵盖了计算机科学和地理空间应用的融合,年度时空数据挑战和黑客马拉松的汇合处,并在亚特兰大科学节上进行公众的参与。即使在隐私约束下,也没有牺牲实时性能,计算可扩展性和跨站点学习。所提出的平台将概括张量建模,以涵盖时空数据的复杂性质,包括时间不规则性,时空相关性和不断发展的分布。它将能够从异质来源整合多源数据,以产生强大而有凝聚力的学习模式。新颖的算法还将促进分散环境中的学习,同时保留隐私。计算平台将包含可互换的模块,该模块可以适应新的时空设置并包含其他上下文信息。 随附的算法套件将从大型时空数据中实现预测性学习,模式挖掘和变化检测。 该项目的广泛适用性将在包括城市运输服务,房地产市场交易和人口健康在内的各种数据上证明。引入的算法创新可用于扩展其他机器学习模型。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LogPar: Logistic PARAFAC2 Factorization for Temporal Binary Data with Missing Values.
- DOI:10.1145/3394486.3403213
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Yin K;Afshar A;Ho JC;Cheung WK;Zhang C;Sun J
- 通讯作者:Sun J
GOCPT: Generalized Online Canonical Polyadic Tensor Factorization and Completion
GOCPT:广义在线正则多元张量分解和完成
- DOI:10.24963/ijcai.2022/326
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yang, Chaoqi;Qian, Cheng;Sun, Jimeng
- 通讯作者:Sun, Jimeng
CP Tensor Decomposition with Cannot-Link Intermode Constraints
具有无法链接模间约束的 CP 张量分解
- DOI:10.1137/1.9781611975673.80
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Jette Henderson†, Bradley A
- 通讯作者:Jette Henderson†, Bradley A
Multi-version Tensor Completion for Time-delayed Spatio-temporal Data
- DOI:10.24963/ijcai.2021/400
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Cheng Qian;Nikos Kargas;Cao Xiao;Lucas Glass;N. Sidiropoulos;Jimeng Sun
- 通讯作者:Cheng Qian;Nikos Kargas;Cao Xiao;Lucas Glass;N. Sidiropoulos;Jimeng Sun
Multi-faceted analysis and prediction for the outbreak of pediatric respiratory syncytial virus
- DOI:10.1093/jamia/ocad212
- 发表时间:2023-11-02
- 期刊:
- 影响因子:6.4
- 作者:Yang,Chaoqi;Gao,Junyi;Sun,Jimeng
- 通讯作者:Sun,Jimeng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jimeng Sun其他文献
Localized Supervised Metric Learning on Temporal Physiological Data
- DOI:
10.1109/icpr.2010.1009 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:0
- 作者:
Jimeng Sun;Sow, Daby;Ebadollahi, Shahram - 通讯作者:
Ebadollahi, Shahram
Mining large graphs and streams using matrix and tensor tools
使用矩阵和张量工具挖掘大型图和流
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
C. Faloutsos;T. Kolda;Jimeng Sun - 通讯作者:
Jimeng Sun
Online latent variable detection in sensor networks
传感器网络中的在线潜变量检测
- DOI:
10.1109/icde.2005.100 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Jimeng Sun;S. Papadimitriou;C. Faloutsos - 通讯作者:
C. Faloutsos
Community Evolution and Change Point Detection in Time-Evolving Graphs
时间演化图中的群落演化和变化点检测
- DOI:
10.1007/978-1-4419-6515-8_3 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Jimeng Sun;S. Papadimitriou;Philip S. Yu;C. Faloutsos - 通讯作者:
C. Faloutsos
Real-time analysis for short-term prognosis in intensive care
重症监护短期预后的实时分析
- DOI:
10.1147/jrd.2012.2197952 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Daby M. Sow;Jimeng Sun;A. Biem;Jianying Hu;M. Blount;S. Ebadollahi - 通讯作者:
S. Ebadollahi
Jimeng Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jimeng Sun', 18)}}的其他基金
Collaborative Research: SCH: Fair Federated Representation Learning for Breast Cancer Risk Scoring
合作研究:SCH:乳腺癌风险评分的公平联合表示学习
- 批准号:
2205289 - 财政年份:2022
- 资助金额:
$ 75.51万 - 项目类别:
Standard Grant
I-Corps: Brain Health Monitoring via Phenotyping Electroencephalogram Data
I-Corps:通过表型脑电图数据监测大脑健康
- 批准号:
2034497 - 财政年份:2020
- 资助金额:
$ 75.51万 - 项目类别:
Standard Grant
SCH:INT: Collaborative Research: Deep Sense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:深度感知:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
- 批准号:
2014438 - 财政年份:2020
- 资助金额:
$ 75.51万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Integrated Scalable Platform for Privacy-aware Collaborative Learning and Inference
协作研究:PPoSS:规划:用于隐私意识协作学习和推理的集成可扩展平台
- 批准号:
2028839 - 财政年份:2020
- 资助金额:
$ 75.51万 - 项目类别:
Standard Grant
I-Corps: Brain Health Monitoring via Phenotyping Electroencephalogram Data
I-Corps:通过表型脑电图数据监测大脑健康
- 批准号:
1839478 - 财政年份:2018
- 资助金额:
$ 75.51万 - 项目类别:
Standard Grant
BigData:IA:Collaborative Research: TIMES: A tensor factorization platform for spatio-temporal data
BigData:IA:协作研究:TIMES:时空数据张量分解平台
- 批准号:
1838042 - 财政年份:2018
- 资助金额:
$ 75.51万 - 项目类别:
Standard Grant
相似国自然基金
Ia型超新星及相关特殊天体研究
- 批准号:12333008
- 批准年份:2023
- 资助金额:239.00 万元
- 项目类别:重点项目
年轻Ia型超新星遗迹在湍动背景场中的数值模拟研究
- 批准号:12203042
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
甘蓝型油菜BnaA01.IA调控花序结构的分子机制解析
- 批准号:32201791
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Ia型超新星抛射物元素丰度与时域观测特征相关性研究
- 批准号:12203029
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
年轻Ia型超新星遗迹在湍动背景场中的数值模拟研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 75.51万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
2308649 - 财政年份:2022
- 资助金额:
$ 75.51万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
- 批准号:
1838022 - 财政年份:2019
- 资助金额:
$ 75.51万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
1947584 - 财政年份:2019
- 资助金额:
$ 75.51万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
1837964 - 财政年份:2019
- 资助金额:
$ 75.51万 - 项目类别:
Standard Grant