Stochastic nature of granular particle interaction and its influence on the system dynamics

粒状粒子相互作用的随机性及其对系统动力学的影响

基本信息

项目摘要

The adequate description of particle interaction is a necessary prerequisite for the understanding of the dynamics of granular systems and, thus, for quantitatively correct (predictive) simulations. Particle systems of industrial scale consist in most cases of a very large number of particles which in turn interact in a complicated way, mainly because of their complex shape and their surface properties. Therefore, for the simulation of particle systems we have to compromize between an adequate number of particles and an adequate description of the grains' interaction: While the frequently applied model of spherical particles allows for the simulation of many thousand grains, this model certainly oversimplifies the interaction of realistic sharply edged particles. On the other hand, while possible in principle, highly sophisticated modeling of single grains and their complex interaction can be simulated only for small systems over short real times, even on very powerful computers. The present research project seeks a solution of the problem in stochastic modeling of the particle interaction which reflects the complex geometry of the particles (leading to complex interaction) in a statistical sense. If successful, this type of modeling will combine the computational efficiency of the simulation of spherical particles with the realistic description of particle interaction provided by more complex particle and particle interaction models.In the first funding period the research was focused on the particle interaction in normal direction. As main results we a) derived a mapping of particle geometry and surface texture to the stochastic properties of a fluctuating coefficient of normal restitution which may be used for highly efficient event-driven particle simulations. Moreover, b) we derived a fluctuating interaction force scheme for particle interaction in normal direction which can be used in time-stepping algorithms (DEM).The complete description of granular system dynamics requires also the knowledge of the quantities determining the tangential interaction of particles, that is, the coefficient of tangential restitution (for event-driven simulations) and the tangential component of the interaction force (for DEM simulations). The derivation of these quantities from the geometric shape properties of the particles and their surface properties will be subject of the present proposal. Moreover, we aim also to compute both components (normal and tangential) for particles whose shape is strongly non-spherical. Thus, we aim to a complete description of the interaction of granular particles by means of stochastic coefficients of restitution (normal and tangential) or stochastic forces, respectively. These characteristics shall be used to test the method of stochastic description by means of simple, however, technical relevant systems.
对粒子相互作用的充分描述是理解颗粒系统动力学的必要先决条件,因此也是定量正确(预测)模拟的必要前提。工业规模的粒子系统在大多数情况下由大量的粒子组成,这些粒子又以复杂的方式相互作用,这主要是因为它们复杂的形状和表面性质。因此,对于粒子系统的模拟,我们必须在足够数量的粒子和对颗粒相互作用的适当描述之间做出妥协:虽然经常应用的球形粒子模型允许模拟数千个颗粒,但这个模型肯定过于简化了现实的尖锐边缘粒子的相互作用。另一方面,虽然理论上可行,但对单个颗粒及其复杂相互作用的高度复杂建模只能在短时间内对小型系统进行模拟,即使在功能非常强大的计算机上也是如此。本研究项目寻求粒子相互作用随机建模问题的解决方案,该问题在统计意义上反映了粒子的复杂几何形状(导致复杂的相互作用)。如果成功,这种类型的建模将结合球形粒子模拟的计算效率和更复杂的粒子和粒子相互作用模型提供的粒子相互作用的真实描述。在第一个资助期,研究重点是粒子在法向相互作用。作为主要结果,我们a)导出了粒子几何和表面纹理映射到正常恢复波动系数的随机特性,可用于高效的事件驱动粒子模拟。此外,b)导出了一种可用于时间步进算法(DEM)的法向粒子相互作用波动力格式。对颗粒系统动力学的完整描述还需要了解决定颗粒切向相互作用的数量,即切向恢复系数(对于事件驱动的模拟)和相互作用力的切向分量(对于DEM模拟)。从粒子的几何形状性质及其表面性质推导出这些量将是本提案的主题。此外,我们还旨在计算形状为强非球形的粒子的两个分量(法向和切向)。因此,我们的目标是通过随机恢复系数(法向和切向)或随机力分别完整地描述颗粒颗粒的相互作用。这些特性应使用测试方法通过简单的随机描述手段,但技术相关的系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Thorsten Pöschel其他文献

Professor Dr. Thorsten Pöschel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Thorsten Pöschel', 18)}}的其他基金

Enhanced Robotic Gripper Optimisation: Simulation utilising Machine-Learning (ERGO:SuM)
增强型机器人夹具优化:利用机器学习进行模拟 (ERGO:SuM)
  • 批准号:
    411517575
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Granular Weissenberg Effect
粒度韦森伯格效应
  • 批准号:
    424177218
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Structural and Mechanical Properties of Nanopowders
纳米粉末的结构和机械性能
  • 批准号:
    184017420
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Granular Continuum-Transition Regime
粒状连续体转变机制
  • 批准号:
    188876449
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Contact phenomena during high velocity collisions of nanoparticles with surfaces
纳米粒子与表面高速碰撞期间的接触现象
  • 批准号:
    169496886
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Clusters in Granular Gases
颗粒气体中的团簇
  • 批准号:
    5453948
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Numerische Simulation technischer Partikelsysteme auf Hochleistungsrechnern
高性能计算机上技术粒子系统的数值模拟
  • 批准号:
    5352832
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Dämpfungseigenschaften granularer Materialien
颗粒材料的阻尼特性
  • 批准号:
    5223642
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Dynamik granularer Teilchen in viskoelastischer Näherung (Granulare Gase)
粘弹性近似中粒状粒子的动力学(粒状气体)
  • 批准号:
    5222968
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Molekulardynamische Modellierung der Langzeitdynamik von Schotter
砾石长期动力学的分子动力学模拟
  • 批准号:
    5101481
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
  • 批准号:
    10086990
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Optimising Nature's pharmacies: plant chemicals and pollinator health at the landscape scale
优化大自然的药房:景观尺度上的植物化学物质和传粉媒介健康
  • 批准号:
    NE/Y000285/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Job share: Embedding environmental and geospatial science in nature recovery and rewilding
工作分享:将环境和地理空间科学融入自然恢复和野化中
  • 批准号:
    NE/Y005163/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Resilient and Equitable Nature-based Pathways in Southern African Rangelands (REPAiR)
南部非洲牧场弹性且公平的基于自然的途径 (REPAiR)
  • 批准号:
    NE/Z503459/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Engineering Nature-based Solutions to Tackle Antimicrobial Resistance
工程基于自然的解决方案来解决抗菌素耐药性
  • 批准号:
    EP/Y003101/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
REU Site: Nature's machinery through the prism of Physics, Biology, Chemistry and Engineering
REU 网站:通过物理、生物、化学和工程学的棱镜观察自然的机器
  • 批准号:
    2349368
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Long-Term Nature Reserve Human Interaction
长期自然保护区人类互动
  • 批准号:
    2345184
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF Engines Development Award: Accelerating A Just Energy Transition Through Innovative Nature-Inclusive Offshore Wind Farms (CT,DE,MA,MD,NJ,RI,VA)
NSF 发动机开发奖:通过创新的自然包容性海上风电场加速公正的能源转型(康涅狄格州、特拉华州、马里兰州、马里兰州、新泽西州、罗德岛州、弗吉尼亚州)
  • 批准号:
    2315558
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Nature-based solutions for the climate change-biodiversity nexus in cities
城市气候变化与生物多样性关系的基于自然的解决方案
  • 批准号:
    DE240100699
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了