Granular Continuum-Transition Regime

粒状连续体转变机制

基本信息

项目摘要

Granular materials are ubiquitous and Nature and central in industry and agriculture. The proposed project will focus on their fluidized phase, known as the "granular gas". Powerful methods of kinetic theory have been employed to produce highly successful hydrodynamic descriptions of granular gases. Hydrodynamics is restricted to low Knudsen numbers (ratio of the mean free path to the pertinent macroscopic scales), and it therefore does; not apply to e.g., the interior of shocks or rarefied (granular) gases. When the Knudsen number is much larger than unity the collisionless limit of the Boltzmann equation applies, however, when is it of the order of unity a detailed study of the kinetics is called for. This defines the "continuum transition regime", which has parallels in e.g., molecular shocks and systems that involve rarefied gases as encountered e.g., in high altitude flights and chip-producing reactors. The goal of the proposed project is to produce continuum descriptions of the granular continuum transition regime and apply these to specific systems, the paradigm being vertically vibrated granular gases. This is planned to be achieved by harnessing recently developed powerful computer-aided analytic tools for the study of the pertinent Boltzmann equation (using the Grad moment expansion as one of the methods) in conjunction with efficient numerical simulations.
颗粒状物质在工业和农业中是普遍存在和重要的.拟议的项目将侧重于其流化阶段,称为“颗粒气”。动力学理论的强有力的方法已经被用来产生非常成功的颗粒气体的流体动力学描述。流体动力学仅限于低努森数(平均自由程与相关宏观尺度的比值),因此不适用于例如,冲击波或稀薄(颗粒状)气体的内部。当克努森数远大于1时,玻尔兹曼方程的无碰撞极限适用,然而,当它是1的数量级时,需要详细研究动力学。这就定义了“连续过渡制度”,它与例如,分子冲击和涉及遇到的稀薄气体的系统例如,在高空飞行和生产芯片的反应堆中。拟议项目的目标是产生连续描述的颗粒连续过渡制度,并将其应用到特定的系统,垂直振动的颗粒气体的范例。计划通过利用最近开发的强大的计算机辅助分析工具来研究相关的玻尔兹曼方程(使用格拉德矩展开作为方法之一),并结合有效的数值模拟来实现这一目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Thorsten Pöschel其他文献

Professor Dr. Thorsten Pöschel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Thorsten Pöschel', 18)}}的其他基金

Enhanced Robotic Gripper Optimisation: Simulation utilising Machine-Learning (ERGO:SuM)
增强型机器人夹具优化:利用机器学习进行模拟 (ERGO:SuM)
  • 批准号:
    411517575
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Granular Weissenberg Effect
粒度韦森伯格效应
  • 批准号:
    424177218
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Stochastic nature of granular particle interaction and its influence on the system dynamics
粒状粒子相互作用的随机性及其对系统动力学的影响
  • 批准号:
    222167291
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Structural and Mechanical Properties of Nanopowders
纳米粉末的结构和机械性能
  • 批准号:
    184017420
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Contact phenomena during high velocity collisions of nanoparticles with surfaces
纳米粒子与表面高速碰撞期间的接触现象
  • 批准号:
    169496886
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Clusters in Granular Gases
颗粒气体中的团簇
  • 批准号:
    5453948
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Numerische Simulation technischer Partikelsysteme auf Hochleistungsrechnern
高性能计算机上技术粒子系统的数值模拟
  • 批准号:
    5352832
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Dämpfungseigenschaften granularer Materialien
颗粒材料的阻尼特性
  • 批准号:
    5223642
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Dynamik granularer Teilchen in viskoelastischer Näherung (Granulare Gase)
粘弹性近似中粒状粒子的动力学(粒状气体)
  • 批准号:
    5222968
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Molekulardynamische Modellierung der Langzeitdynamik von Schotter
砾石长期动力学的分子动力学模拟
  • 批准号:
    5101481
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

MICRO-CYCLE: Unravelling the role of microbial genomic traits in organic matter cycling and molecular composition along the river continuum
微循环:揭示微生物基因组特征在河流连续体有机物循环和分子组成中的作用
  • 批准号:
    NE/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Vision Servoing Based Micro Continuum Robot Actuated by SMA Wires for Precise Laser Irradiation during Transurethral Lithotripsy
基于视觉伺服的微型连续体机器人由 SMA 线驱动,用于经尿道碎石术期间的精确激光照射
  • 批准号:
    24K21116
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Enabling a Novel Evaluation Continuum for Connected & Autonomous Vehicles
实现互联的新颖评估连续体
  • 批准号:
    MR/Y003969/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
I-Corps: Translation Potential of a Minimally Invasive Continuum Surgical Robot for the Eye/Ear
I-Corps:眼/耳微创连续手术机器人的翻译潜力
  • 批准号:
    2420989
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MICRO-CYCLE: Unravelling the role of microbial genomic traits in organic matter cycling and molecular composition along the river continuum
微循环:揭示微生物基因组特征在河流连续体有机物循环和分子组成中的作用
  • 批准号:
    NE/Z000173/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Low-dimensional material-based nanolaser using photonic bound states in the continuum
使用连续体中的光子束缚态的基于低维材料的纳米激光器
  • 批准号:
    23K26155
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Safe Continuum Robot Inside Magnetic Resonance Imaging (MRI)
职业:磁共振成像 (MRI) 内的安全连续体机器人
  • 批准号:
    2339202
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A general continuum theory of polycrystalline materials
多晶材料的一般连续介质理论
  • 批准号:
    EP/X037800/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
MYRTUS: Multi-layer 360° dYnamic orchestrion and interopeRable design environmenT for compute-continUum Systems
MYRTUS:用于连续计算系统的多层 360° 动态编排和可互操作设计环境
  • 批准号:
    10087666
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Integrating universal and tailored approaches across the continuum of mental health and substance use supports: Supporting the implementation and coordination of the Icelandic Prevention Model and Integrated Youth Services
在心理健康和药物滥用支持的连续过程中整合通用和量身定制的方法:支持冰岛预防模式和综合青年服务的实施和协调
  • 批准号:
    477940
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Salary Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了