NSF EAGER: Topic Models for Population Genetics
NSF EAGER:群体遗传学主题模型
基本信息
- 批准号:1547120
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project breaks new ground by revealing the compelling analogy between analysis of natural language and genetics. In text analysis, documents are modeled as discussing different topics, each with its characteristic vocabulary. Similarly, modern day individuals can be thought of as having ancestry in multiple populations, each with its characteristic genetic patterns. Applied to state-of-the-art genomic data from contemporary individuals and archaeological remains, the unified framework proposed by this project is expected to resolve great historical mysteries, such as the decline of the Mayans, the spread of agriculture, or the evolution of the Indian caste system.The project is expected to adapt Topic Modeling techniques, a framework from Natural Language Processing which employs Latent Dirichlet Allocation to population genetics. The project will pursue three goals:1. Formulate existing analysis methods in population genetics as Topic Models, leveraging the existing framework in other domains to improve efficiency and accuracy of genomic analysis2. Introduce the domain-specific concepts of time and space, across which populations evolve in a theoretically understood way. 3. Integrate the components of the model to create a graphical model of ancestral populations, which describes the genetic history of contemporary and historical populations whose genomes had been sequenced.The project will compare accuracy and efficiency of models vs. the existing standards in the field. All software tools that will be developed as part of the project will be made available to the research community.
该项目通过揭示自然语言分析和遗传学之间令人信服的相似性来开辟新天地。在文本分析中,文档被建模为讨论不同的主题,每个主题都有其特征词汇。类似地,现代个体可以被认为具有多个种群的祖先,每个种群都有其特有的遗传模式。应用于当代个人和考古遗迹的最先进的基因组数据,该项目提出的统一框架有望解决重大的历史谜团,如玛雅人的衰落,农业的传播,或印度种姓制度的演变。该项目预计将采用主题建模技术,自然语言处理的一个框架,它采用了潜在的狄利克雷分配人口遗传学。该项目将追求三个目标:1。将群体遗传学中现有的分析方法制定为主题模型,利用其他领域的现有框架来提高基因组分析的效率和准确性2。引入特定领域的时间和空间概念,人口以理论上理解的方式进化。3.整合模型的组成部分,创建一个祖先种群的图形模型,该模型描述了基因组已被测序的当代和历史种群的遗传历史。该项目将比较模型与该领域现有标准的准确性和效率。 作为该项目一部分开发的所有软件工具都将提供给研究界。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
2-Way k-Means as a Model for Microbiome Samples
2 路 k 均值作为微生物组样本的模型
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Weston J. Jackson, Ipsita Agarwal
- 通讯作者:Weston J. Jackson, Ipsita Agarwal
Mixed-Layer Deep Modeling of Genotypes and Cross-Tissue Expression Uncovers Trans-Eqtls
基因型和跨组织表达的混合层深度建模揭示了 Trans-Eqtls
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Shuo Yang, Dana Pe’er
- 通讯作者:Shuo Yang, Dana Pe’er
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Itshack Pe'er其他文献
Itshack Pe'er的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Itshack Pe'er', 18)}}的其他基金
CAREER: Computational Infrastructure for Full-Sequence Association Studies with Pooled Individuals
职业:与汇集个体进行全序列关联研究的计算基础设施
- 批准号:
0845677 - 财政年份:2009
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EMT: Computational methods for mapping genealogy of unrelated individuals from high throughput genetic data
EMT:从高通量遗传数据中绘制无关个体谱系的计算方法
- 批准号:
0829882 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
- 批准号:
2348836 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Accelerating decarbonization by representing catalysts with natural language
EAGER:通过用自然语言表示催化剂来加速脱碳
- 批准号:
2345734 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant