RTG: Computational and Applied Mathematics in Statistical Science
RTG:统计科学中的计算与应用数学
基本信息
- 批准号:1547396
- 负责人:
- 金额:$ 174.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Research Training Group (RTG) project supports creation of a dynamic, interactive, and vertically integrated community of students and researchers working together in computational and applied mathematics and statistics. The activity recognizes the ways in which applied mathematics and statistics are becoming increasingly integrated. For example, mechanistic models for physical problems that reflect underlying physical laws are being combined with data-driven approaches in which statistical inference and optimization play key roles. These developments are transforming research agendas throughout statistics and applied mathematics, with fundamental problems in analyzing data leading to new areas of mathematical and statistical research. A result is a growing need to train the next generation of statisticians and computational and applied mathematicians in new ways, to confront data-centric problems in the natural and social sciences. The research and educational activities of the project lie at the interface of statistics, computation, and applied mathematics. The research includes investigations in chemistry and molecular dynamics, climate science, computational neuroscience, convex and nonlinear optimization, machine learning, and statistical genetics. The research team is made up of a diverse group of twelve faculty, including researchers at Toyota Technological Institute at Chicago and Argonne National Laboratory. The RTG is centered on vertically integrated research experiences for students, and includes innovations in both undergraduate and graduate education. These include the formation of working groups of students and postdocs to provide an interactive environment where students can actively explore innovations in computation, mathematics, and statistics in a broad range of disciplines. Post-docs will assume leadership roles in mentoring graduate students and advanced undergraduates. Participants in the RTG will receive an educational experience that provides them with strong preparation for positions in industry, government, and academics, with an ability to adopt approaches to problem solving that are drawn from across the computational, mathematical, and statistical sciences.
这个研究培训小组(RTG)项目支持创建一个动态的、互动的、垂直整合的学生和研究人员社区,他们在计算、应用数学和统计学领域共同工作。该活动认识到应用数学和统计学正变得日益一体化的方式。例如,反映潜在物理规律的物理问题的机械模型正在与数据驱动的方法相结合,在这些方法中,统计推断和优化发挥着关键作用。这些发展正在改变整个统计学和应用数学的研究议程,数据分析中的基本问题导致了数学和统计研究的新领域。其结果是,越来越需要以新的方式培训下一代统计学家、计算数学家和应用数学家,以应对自然科学和社会科学中以数据为中心的问题。该项目的研究和教育活动涉及统计、计算和应用数学。这项研究包括化学和分子动力学、气候科学、计算神经科学、凸优化和非线性优化、机器学习和统计遗传学。研究团队由12名教职员工组成,其中包括芝加哥丰田理工学院和阿贡国家实验室的研究人员。RTG以学生垂直整合的研究体验为中心,包括本科生和研究生教育的创新。这些措施包括成立学生和博士后工作组,以提供一个互动的环境,让学生在广泛的学科中积极探索计算、数学和统计学方面的创新。博士后将在指导研究生和高级本科生方面发挥领导作用。RTG的参与者将获得教育经验,为他们在工业、政府和学术界的职位做好充分准备,并有能力采用来自计算、数学和统计科学的方法来解决问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lek-Heng Lim其他文献
Numerical Algorithms on the Affine Grassmannian
仿射格拉斯曼的数值算法
- DOI:
10.1137/18m1169321 - 发表时间:
2016-07 - 期刊:
- 影响因子:1.5
- 作者:
Lek-Heng Lim;Ken Sze-wai Wong;Ke Ye - 通讯作者:
Ke Ye
Special Issue: Polynomial and Tensor Optimization
- DOI:
10.1007/s10107-022-01826-3 - 发表时间:
2022-05-17 - 期刊:
- 影响因子:2.500
- 作者:
Shmuel Friedland;Jean-Bernard Lasserre;Lek-Heng Lim;Jiawang Nie - 通讯作者:
Jiawang Nie
Optimization on flag manifolds
- DOI:
10.1007/s10107-021-01640-3 - 发表时间:
2021-06-23 - 期刊:
- 影响因子:2.500
- 作者:
Ke Ye;Ken Sze-Wai Wong;Lek-Heng Lim - 通讯作者:
Lek-Heng Lim
代表作2-The Grassmannian of affine subspaces
- DOI:
10.1007/s10208-020-09459-8 - 发表时间:
2021 - 期刊:
- 影响因子:3
- 作者:
Lek-Heng Lim;Ken Sze-Wai Wong;Ke Ye - 通讯作者:
Ke Ye
代表作1-Optimization on flag manifolds
- DOI:
https://doi.org/10.1007/s10107-021-01640-3 - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Ke Ye;Ken Sze-Wai Wong;Lek-Heng Lim - 通讯作者:
Lek-Heng Lim
Lek-Heng Lim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lek-Heng Lim', 18)}}的其他基金
Collaborative Research: Geometric Harmonic Analysis in Learning and Inference: Theory and Applications
合作研究:学习和推理中的几何调和分析:理论与应用
- 批准号:
1854831 - 财政年份:2019
- 资助金额:
$ 174.94万 - 项目类别:
Continuing Grant
BIGDATA: Collaborative Research: F: Big Data, It's Not So Big: Exploiting Low-Dimensional Geometry for Learning and Inference
BIGDATA:协作研究:F:大数据,它并不是那么大:利用低维几何进行学习和推理
- 批准号:
1546413 - 财政年份:2015
- 资助金额:
$ 174.94万 - 项目类别:
Standard Grant
Collaborative Research: Numerical algebra and statistical inference
合作研究:数值代数和统计推断
- 批准号:
1209136 - 财政年份:2012
- 资助金额:
$ 174.94万 - 项目类别:
Continuing Grant
CAREER: Numerical Multilinear Algebra and Its Applications - From Matrices to Tensors
职业:数值多重线性代数及其应用 - 从矩阵到张量
- 批准号:
1057064 - 财政年份:2011
- 资助金额:
$ 174.94万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
REU Site: Computational and Applied Mathematics Program
REU 网站:计算和应用数学项目
- 批准号:
2348984 - 财政年份:2024
- 资助金额:
$ 174.94万 - 项目类别:
Continuing Grant
REU Site: Research Experience for Undergraduates in Applied and Computational Mathematics
REU 网站:应用与计算数学本科生的研究经验
- 批准号:
2243772 - 财政年份:2023
- 资助金额:
$ 174.94万 - 项目类别:
Continuing Grant
Collaborative Research: New perspectives from applied and computational time-frequency analysis
合作研究:应用和计算时频分析的新视角
- 批准号:
2309652 - 财政年份:2023
- 资助金额:
$ 174.94万 - 项目类别:
Standard Grant
Collaborative Research: New perspectives from applied and computational time-frequency analysis
合作研究:应用和计算时频分析的新视角
- 批准号:
2309651 - 财政年份:2023
- 资助金额:
$ 174.94万 - 项目类别:
Standard Grant
Conference: Conference on Frontiers in Applied and Computational Mathematics (FACM 2023): New trends in computational wave propagation and imaging
会议:应用与计算数学前沿会议(FACM 2023):计算波传播和成像的新趋势
- 批准号:
2246813 - 财政年份:2023
- 资助金额:
$ 174.94万 - 项目类别:
Standard Grant
Computational models, algorithms and methods for comparative genomics, applied to pathogens and anopheles mosquitoes genomes
应用于病原体和按蚊基因组的比较基因组学计算模型、算法和方法
- 批准号:
RGPIN-2017-03986 - 财政年份:2022
- 资助金额:
$ 174.94万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial, Computational, and Applied Algebraic Geometry, Seattle 2022
组合、计算和应用代数几何,西雅图 2022
- 批准号:
2142724 - 财政年份:2022
- 资助金额:
$ 174.94万 - 项目类别:
Standard Grant
Conference on Frontiers in Applied and Computational Mathematics (FACM-2022): New Perspectives in Mathematical Biology
应用与计算数学前沿会议(FACM-2022):数学生物学的新视角
- 批准号:
2154556 - 财政年份:2022
- 资助金额:
$ 174.94万 - 项目类别:
Standard Grant
Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis
合作研究:抽象、应用和计算谐波分析主题
- 批准号:
2205852 - 财政年份:2022
- 资助金额:
$ 174.94万 - 项目类别:
Standard Grant
REU Site: The University of Texas Rio Grande Valley REU Program on Applied Mathematics and Computational and Data Science
REU 网站:德克萨斯大学里奥格兰德河谷 REU 应用数学、计算和数据科学项目
- 批准号:
2150478 - 财政年份:2022
- 资助金额:
$ 174.94万 - 项目类别:
Standard Grant