Collaborative Research: Numerical algebra and statistical inference
合作研究:数值代数和统计推断
基本信息
- 批准号:1209136
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigators have two aims in this proposal that fall at the interface of numerical algebra and statistical inference. The first aim is to extend the use of randomized approximation in a variety of dimension reduction methods that rely on numerical linear algebra both supervised and unsupervised as well as linear and nonlinear and develop a statistical bases for these methods in addition to the computational motivation of being applicable to massive data. The other motivation is to extend these statistical methods for dimension reduction to multiway data using numerical multilinear algebra, a recent new development in numerical analysis. These projects will increase interaction between statistical inference and numerical analysis and benefit both fields, providing new perspectives to how we view and perform data analysis.Numerical methods with statistical implications are central to a variety of technologies used by the general population. These technologies include Google's pagerank algorithm, genetic methods used to find genetic variation related to disease, compressing of medical images for storage and treatment, as well as applications in geostatistics. In all the previous cases the fundamental idea is to condense massive data in a useful summary with respect to a desired goal. The two ideas in this proposal are (1) to study how numerical methods that scale to the massive data generated in modern scientific, engineering, and social applications impose statistical assumptions or models on the data, (2) to study more complex interactions or properties of the data than examined in current methods. The motivation behind the first aim is to understand how numerical approximations required for computational scaling as we collect more data impact the information that can be extracted from these data -- for what type of data and applications do certain numerical approximations work well. The motivation behind the second aim is to go beyond the broad category of standard statistical methods take into account the relation between pairs of objects -- two web pages that are linked for Google's pagerank, the correlation between two genes or two loci in genetics applications. The question behind this aim is whether richer sources of information can be extracted by examining the links between three web pages or three loci. The research involved in this aim consists of the development of computationally efficient algebraic methods to extract this information and understanding the statistical models implemented by these methods.
调查人员在这个建议中有两个目标,它们落在数值代数和统计推断的界面上。第一个目标是扩展随机近似在各种降维方法中的使用,这些方法依赖于有监督和无监督的数值线性代数以及线性和非线性,并且除了适用于海量数据的计算动机之外,还为这些方法开发统计基础。另一个动机是扩展这些统计方法的降维多路数据使用数值多线性代数,最近的新发展,在数值分析。这些项目将增加统计推断和数值分析之间的互动,并使这两个领域受益,为我们如何看待和执行数据分析提供新的视角。具有统计意义的数值方法是普通人群使用的各种技术的核心。这些技术包括Google的PageRank算法,用于发现与疾病相关的遗传变异的遗传方法,用于存储和治疗的医学图像压缩,以及在地质统计学中的应用。在前面的所有案例中,基本思想都是将大量数据浓缩在一个有用的摘要中,以实现预期的目标。该提案中的两个想法是:(1)研究现代科学,工程和社会应用中产生的大量数据的数值方法如何对数据施加统计假设或模型,(2)研究比现有方法更复杂的相互作用或数据属性。第一个目标背后的动机是了解当我们收集更多数据时,计算缩放所需的数值近似如何影响可以从这些数据中提取的信息-某些数值近似适用于什么类型的数据和应用程序。第二个目标背后的动机是超越标准统计方法的广泛类别,考虑到对象对之间的关系-两个网页被链接到谷歌的网页排名,两个基因或两个基因座之间的相关性在遗传学应用中。这一目标背后的问题是,是否可以通过检查三个网页或三个地点之间的链接来提取更丰富的信息来源。在这一目标所涉及的研究包括开发计算效率高的代数方法来提取这些信息,并了解这些方法实现的统计模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lek-Heng Lim其他文献
Numerical Algorithms on the Affine Grassmannian
仿射格拉斯曼的数值算法
- DOI:
10.1137/18m1169321 - 发表时间:
2016-07 - 期刊:
- 影响因子:1.5
- 作者:
Lek-Heng Lim;Ken Sze-wai Wong;Ke Ye - 通讯作者:
Ke Ye
Special Issue: Polynomial and Tensor Optimization
- DOI:
10.1007/s10107-022-01826-3 - 发表时间:
2022-05-17 - 期刊:
- 影响因子:2.500
- 作者:
Shmuel Friedland;Jean-Bernard Lasserre;Lek-Heng Lim;Jiawang Nie - 通讯作者:
Jiawang Nie
Optimization on flag manifolds
- DOI:
10.1007/s10107-021-01640-3 - 发表时间:
2021-06-23 - 期刊:
- 影响因子:2.500
- 作者:
Ke Ye;Ken Sze-Wai Wong;Lek-Heng Lim - 通讯作者:
Lek-Heng Lim
代表作2-The Grassmannian of affine subspaces
- DOI:
10.1007/s10208-020-09459-8 - 发表时间:
2021 - 期刊:
- 影响因子:3
- 作者:
Lek-Heng Lim;Ken Sze-Wai Wong;Ke Ye - 通讯作者:
Ke Ye
代表作1-Optimization on flag manifolds
- DOI:
https://doi.org/10.1007/s10107-021-01640-3 - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Ke Ye;Ken Sze-Wai Wong;Lek-Heng Lim - 通讯作者:
Lek-Heng Lim
Lek-Heng Lim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lek-Heng Lim', 18)}}的其他基金
Collaborative Research: Geometric Harmonic Analysis in Learning and Inference: Theory and Applications
合作研究:学习和推理中的几何调和分析:理论与应用
- 批准号:
1854831 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
RTG: Computational and Applied Mathematics in Statistical Science
RTG:统计科学中的计算与应用数学
- 批准号:
1547396 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
BIGDATA: Collaborative Research: F: Big Data, It's Not So Big: Exploiting Low-Dimensional Geometry for Learning and Inference
BIGDATA:协作研究:F:大数据,它并不是那么大:利用低维几何进行学习和推理
- 批准号:
1546413 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Numerical Multilinear Algebra and Its Applications - From Matrices to Tensors
职业:数值多重线性代数及其应用 - 从矩阵到张量
- 批准号:
1057064 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: WoU-MMA: Understanding the Physics and Electromagnetic Counterparts of Neutrino Blazars with Numerical Simulations
合作研究:WoU-MMA:通过数值模拟了解中微子耀变体的物理和电磁对应物
- 批准号:
2308090 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
- 批准号:
2319535 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
- 批准号:
2244696 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
- 批准号:
2309748 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
- 批准号:
2319536 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325195 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
- 批准号:
2319142 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308679 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant