Geometric Inequalities and Fully Nonlinear Elliptic Equations
几何不等式和完全非线性椭圆方程
基本信息
- 批准号:1547878
- 负责人:
- 金额:$ 1.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Principal Investigator (PI) will study various geometric inequalities and their corresponding nonlinear partial differential equations in the context of conformal geometry and the geometry of submanifolds. One theme plans to investigate the effect of the higher order curvatures on the validity of the isoperimetric inequality. In particular, she intends to quantitatively analyze the interaction between the Q-curvature and the isoperimetric constant. The PI also proposes to study curvature inequalities of different orders for embedded submanifolds. These inequalities, originally considered in the context of convex geometry, have recently known to be valid on a very large class of non-convex domains. The PI's investigation strives to look for the full generality of such inequalities. In the meanwhile, she also aims to develop new skills to understand the corresponding fully nonlinear elliptic partial differential equations that arise naturally in the problem.In the proposed study, the PI's research interest lies at the intersection of conformal geometry, the geometry of submanifolds and partial differential equations (PDEs). The study of geometric inequalities and geometric PDEs focuses on conformal invariants, which form an important machinery from physicists' point of view and have found applications to fundamental principles in mathematical physics. The research project to generalize classical results of convex geometry will improve our understanding on the rigidity of the established theory and will shed light on a greatly larger scope of its application.
主要研究者(PI)将研究各种几何不等式及其相应的非线性偏微分方程的背景下,共形几何和几何的子流形。一个主题是研究高阶曲率对等周不等式有效性的影响。特别是,她打算定量分析Q曲率和等周常数之间的相互作用。PI还建议研究嵌入子流形的不同阶的曲率不等式。这些不等式,最初被认为是在凸几何的背景下,最近被称为是有效的一个非常大的一类非凸域。PI的调查努力寻找这种不平等的全部普遍性。同时,她也致力于发展新的技能,以理解相应的完全非线性椭圆偏微分方程,自然出现在问题中。在拟议的研究中,PI的研究兴趣在于共形几何,子流形几何和偏微分方程(PDE)的交叉点。几何不等式和几何偏微分方程的研究集中在共形不变量上,从物理学家的角度来看,共形不变量是一个重要的机制,并在数学物理的基本原理中找到了应用。推广凸几何的经典结果的研究计划将提高我们对已建立理论的刚性的理解,并将揭示其更大的应用范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi Wang其他文献
Synthesis analysis of frequency selective surface using the generalized sheet transition conditions
使用广义片过渡条件的频率选择表面综合分析
- DOI:
10.1002/mmce.22707 - 发表时间:
2021-04 - 期刊:
- 影响因子:1.7
- 作者:
Shi Chen;Yi Wang;Huangyan Li;Xiaoxing Fang;Qunsheng Cao - 通讯作者:
Qunsheng Cao
[Aging affects early stage direction selectivity of MT cells in rhesus monkeys].
衰老影响恒河猴MT细胞早期方向选择性
- DOI:
10.3724/sp.j.1141.2012.05498 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Zhen Liang;Yue Chen;Xue Meng;Yi Wang;Baozhuo Zhou;Ying;Wenxuan He - 通讯作者:
Wenxuan He
Shared and distinct reward neural mechanisms among patients with schizophrenia, major depressive disorder, and bipolar disorder: an effort-based functional imaging study
精神分裂症、重度抑郁症和双相情感障碍患者共享和独特的奖励神经机制:一项基于努力的功能成像研究
- DOI:
10.1007/s00406-021-01376-3 - 发表时间:
2022-01 - 期刊:
- 影响因子:4.7
- 作者:
Yan-yu Wang;Yi Wang;Jia Huang;Xi-he Sun;Xi-zhen Wang;Shu-xian Zhang;Guo-hui Zhu;Simon S. Y. Lui;Eric F. C. Cheung;Hong-wei Sun;Raymond C. K. Chan - 通讯作者:
Raymond C. K. Chan
Multiscale Compressed Block Decomposition Method With Characteristic Basis Function Method and Fast Adaptive Cross Approximation
具有特征基函数法和快速自适应交叉逼近的多尺度压缩块分解方法
- DOI:
10.1109/temc.2018.2801384 - 发表时间:
2019-02 - 期刊:
- 影响因子:2.1
- 作者:
Xiaoxing Fang;Qunsheng Cao;Ye Zhou;Yi Wang - 通讯作者:
Yi Wang
Synthesis and photoluminescence characteristics of novel blue light-emitting naphthalimide derivatives
新型蓝光萘酰亚胺衍生物的合成及光致发光特性
- DOI:
- 发表时间:
- 期刊:
- 影响因子:4.5
- 作者:
Yi Wang;Xiaogen Zhang;Bing Han;et al - 通讯作者:
et al
Yi Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi Wang', 18)}}的其他基金
Collaborative Research: IRES Track I: Undergraduate Interdisciplinary Research in Spain on Smart Connected Systems (UIRiSCS)
合作研究:IRES 第一轨:西班牙智能互联系统本科跨学科研究 (UIRiSCS)
- 批准号:
2153667 - 财政年份:2022
- 资助金额:
$ 1.12万 - 项目类别:
Standard Grant
Programmable Microwave Hardware Based on Liquid Wires (PROGRAMMABLE)
基于液线的可编程微波硬件(PROGRAMMABLE)
- 批准号:
EP/V008382/1 - 财政年份:2021
- 资助金额:
$ 1.12万 - 项目类别:
Research Grant
Arveson-Douglas Conjecture and Its Applications
阿维森-道格拉斯猜想及其应用
- 批准号:
2101370 - 财政年份:2020
- 资助金额:
$ 1.12万 - 项目类别:
Continuing Grant
CAREER: Conformal Geometry and Monge-Ampere Type Equations
职业:共形几何和 Monge-Ampere 型方程
- 批准号:
1845033 - 财政年份:2019
- 资助金额:
$ 1.12万 - 项目类别:
Continuing Grant
Arveson-Douglas Conjecture and Its Applications
阿维森-道格拉斯猜想及其应用
- 批准号:
1900076 - 财政年份:2019
- 资助金额:
$ 1.12万 - 项目类别:
Continuing Grant
Geometric Analysis in Conformal Geometry and Fully Nonlinear Elliptic Partial Differential Equations
共形几何和全非线性椭圆偏微分方程中的几何分析
- 批准号:
1612015 - 财政年份:2016
- 资助金额:
$ 1.12万 - 项目类别:
Standard Grant
Synthesis and new applications of multi-port filtering networks
多端口滤波网络综合及新应用
- 批准号:
EP/M013529/1 - 财政年份:2015
- 资助金额:
$ 1.12万 - 项目类别:
Research Grant
Geometric Inequalities and Fully Nonlinear Elliptic Equations
几何不等式和完全非线性椭圆方程
- 批准号:
1205350 - 财政年份:2012
- 资助金额:
$ 1.12万 - 项目类别:
Standard Grant
相似海外基金
Rural Co-Design and Collaboration: Maximising Rural Community Assets to Reduce Place-Based Health Inequalities
农村共同设计与协作:最大化农村社区资产以减少基于地点的健康不平等
- 批准号:
AH/Z505559/1 - 财政年份:2024
- 资助金额:
$ 1.12万 - 项目类别:
Research Grant
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 1.12万 - 项目类别:
What are the implications of health inequalities such as parental education and household income in BAME 11-16 year old's mental health in Wales
父母教育和家庭收入等健康不平等对威尔士 BAME 11-16 岁心理健康有何影响
- 批准号:
2875399 - 财政年份:2024
- 资助金额:
$ 1.12万 - 项目类别:
Studentship
Analysing Earnings from Creative Education and Creative Work: Decomposing University, Industry and Social Inequalities.
分析创意教育和创意工作的收入:分解大学、工业和社会不平等。
- 批准号:
ES/Z502455/1 - 财政年份:2024
- 资助金额:
$ 1.12万 - 项目类别:
Fellowship
Bridging the Gender Data Gap: Using Census Data to Understand Gender Inequalities Across the UK
缩小性别数据差距:利用人口普查数据了解英国各地的性别不平等
- 批准号:
ES/Z502753/1 - 财政年份:2024
- 资助金额:
$ 1.12万 - 项目类别:
Research Grant
National Partnership to tackle Health Inequalities in Coastal Communities
国家伙伴关系解决沿海社区的健康不平等问题
- 批准号:
AH/Z505419/1 - 财政年份:2024
- 资助金额:
$ 1.12万 - 项目类别:
Research Grant
ReHousIn - Contextualized pathways to reduce housing inequalities in the green and digital transition
ReHousIn - 减少绿色和数字转型中住房不平等的情境化途径
- 批准号:
10092240 - 财政年份:2024
- 资助金额:
$ 1.12万 - 项目类别:
EU-Funded
Making Every Community Asset Count: Improving Health and Reducing Inequalities for People Experiencing Homelessness
让每一项社区资产发挥作用:改善无家可归者的健康并减少不平等
- 批准号:
AH/Z505389/1 - 财政年份:2024
- 资助金额:
$ 1.12万 - 项目类别:
Research Grant
Tackling Health Inequalities with and for the Deaf BSL-Using Communities in Wales
与威尔士使用 BSL 的聋人社区一起解决健康不平等问题
- 批准号:
AH/Z505432/1 - 财政年份:2024
- 资助金额:
$ 1.12万 - 项目类别:
Research Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 1.12万 - 项目类别:
Research Grant














{{item.name}}会员




