CAREER: Conformal Geometry and Monge-Ampere Type Equations
职业:共形几何和 Monge-Ampere 型方程
基本信息
- 批准号:1845033
- 负责人:
- 金额:$ 44.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The study of conformal geometry has always been a fundamental subject in differential geometry. It has a tight relationship to partial differential equations and mathematical physics. In this research project, the PI will conduct study on conformal invariants, and investigate important roles of conformal invariants in geometric inequalities. The PI also plans to push the theory to the field of Cauchy-Riemann geometry, another important field of differential geometry. The award also includes support for educational activities for students of different academic levels. The PI will organize the first-year graduate mini-courses in geometric analysis, create research programs for undergraduate students, and expand the MADGS workshop to increase the participation of graduate students, especially of those from underrepresented groups. Those activities aim to provide opportunities to early career researchers and encourage their collaborations.One direction of this research project is to understand conformal invariants and how they control the asymptotic behavior at the ends of noncompact manifolds, and thus affect geometric inequalities including the isoperimetric inequality. Another direction is to study the relationship between conformal invariants and Monge-Ampere equations, one of the most important equations that arises naturally in mathematics and physics. The PI will continue her work on the construction of fully nonlinear functionals so that they shed light on both geometric and analytic features of the equation. The methods will incorporate those from conformal geometry, harmonic analysis and partial differential equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
共形几何的研究一直是微分几何的基础学科。它与偏微分方程和数学物理有着密切的关系。在这个研究项目中,PI将开展共形不变量的研究,并研究共形不变量在几何不等式中的重要作用。 PI 还计划将该理论推向柯西-黎曼几何领域,这是微分几何的另一个重要领域。该奖项还包括对不同学术水平学生的教育活动的支持。 PI 将组织一年级研究生几何分析迷你课程,为本科生创建研究项目,并扩大 MADGS 研讨会以增加研究生的参与,特别是来自代表性不足群体的研究生的参与。这些活动旨在为早期职业研究人员提供机会并鼓励他们的合作。该研究项目的一个方向是了解共形不变量以及它们如何控制非紧流形末端的渐近行为,从而影响几何不等式,包括等周不等式。另一个方向是研究共形不变量和蒙日-安培方程之间的关系,这是数学和物理学中自然出现的最重要的方程之一。 PI 将继续致力于构建完全非线性泛函,以便阐明方程的几何和解析特征。这些方法将结合共形几何、调和分析和偏微分方程中的方法。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sun-Yung Alice Chang and geometric analysis.
Sun-Yung Alice Chang 和几何分析。
- DOI:10.1090/noti2037
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Gursky, Matthew Wang
- 通讯作者:Gursky, Matthew Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi Wang其他文献
Plasma protein binding rate of difloxacin in crucian carp Carassais auratus gibelio: Plasma protein binding rate of difloxacin in crucian carp Carassais auratus gibelio
二氟沙星在银鲫体内的血浆蛋白结合率: 二氟沙星在银鲫体内的血浆蛋白结合率
- DOI:
10.3724/sp.j.1118.2012.00721 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Haixin Zhang;K. Hu;J. Ruan;Weidong Zhen;Xian;Huicong Wang;R. Ou;Yi Wang - 通讯作者:
Yi Wang
Preparation and Characterization of MoB Coating on Mo Substrate
Mo基体上MoB涂层的制备及表征
- DOI:
10.3390/met8020093 - 发表时间:
2018-01 - 期刊:
- 影响因子:2.9
- 作者:
Yi Wang;Haiyan Shi;Jianhui Yan;Dezhiu Wang - 通讯作者:
Dezhiu Wang
Plant Process for the Preparation of Cinchona Alkaloid-Based Thiourea Catalysts
制备金鸡纳生物碱基硫脲催化剂的植物工艺
- DOI:
10.1021/acs.oprd.7b00049 - 发表时间:
2017 - 期刊:
- 影响因子:3.4
- 作者:
Yi Wang;Karen L. Milkiewicz;M. Kaufman;Linli He;N. Landmesser;Daniel V. Levy;P. AllweinShawn;Christie Michael;M. A. Olsen;Christopher J. Neville;K. Muthukumaran - 通讯作者:
K. Muthukumaran
Resolving the public-sector wage premium puzzle by indirect inference
通过间接推理解决公共部门工资溢价难题
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2.2
- 作者:
P. Minford;Yi Wang;Pengtao Zhou - 通讯作者:
Pengtao Zhou
CDK9 inhibition improves diabetic nephropathy by reducing inflammation in the kidneys.
CDK9 抑制通过减少肾脏炎症来改善糖尿病肾病
- DOI:
10.1016/j.taap.2021.115465 - 发表时间:
2021-02 - 期刊:
- 影响因子:3.8
- 作者:
Xiaojing Yang;Wu Luo;Li Li;Xiang Hu;Mingjiang Xu;Yi Wang;Jianpeng Feng;Jianchang Qian;Xinfu Guan;Yunjie Zhao;Guang Liang - 通讯作者:
Guang Liang
Yi Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi Wang', 18)}}的其他基金
Collaborative Research: IRES Track I: Undergraduate Interdisciplinary Research in Spain on Smart Connected Systems (UIRiSCS)
合作研究:IRES 第一轨:西班牙智能互联系统本科跨学科研究 (UIRiSCS)
- 批准号:
2153667 - 财政年份:2022
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
Programmable Microwave Hardware Based on Liquid Wires (PROGRAMMABLE)
基于液线的可编程微波硬件(PROGRAMMABLE)
- 批准号:
EP/V008382/1 - 财政年份:2021
- 资助金额:
$ 44.99万 - 项目类别:
Research Grant
Arveson-Douglas Conjecture and Its Applications
阿维森-道格拉斯猜想及其应用
- 批准号:
2101370 - 财政年份:2020
- 资助金额:
$ 44.99万 - 项目类别:
Continuing Grant
Arveson-Douglas Conjecture and Its Applications
阿维森-道格拉斯猜想及其应用
- 批准号:
1900076 - 财政年份:2019
- 资助金额:
$ 44.99万 - 项目类别:
Continuing Grant
Geometric Analysis in Conformal Geometry and Fully Nonlinear Elliptic Partial Differential Equations
共形几何和全非线性椭圆偏微分方程中的几何分析
- 批准号:
1612015 - 财政年份:2016
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
Synthesis and new applications of multi-port filtering networks
多端口滤波网络综合及新应用
- 批准号:
EP/M013529/1 - 财政年份:2015
- 资助金额:
$ 44.99万 - 项目类别:
Research Grant
Geometric Inequalities and Fully Nonlinear Elliptic Equations
几何不等式和完全非线性椭圆方程
- 批准号:
1547878 - 财政年份:2014
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
Geometric Inequalities and Fully Nonlinear Elliptic Equations
几何不等式和完全非线性椭圆方程
- 批准号:
1205350 - 财政年份:2012
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
相似海外基金
Analysis and Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的分析和几何
- 批准号:
2350530 - 财政年份:2024
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
Conformal Geometry, Analysis, and Physics
共形几何、分析和物理
- 批准号:
2154127 - 财政年份:2022
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10701881 - 财政年份:2021
- 资助金额:
$ 44.99万 - 项目类别:
Transformation Groups in Conformal and Projective Geometry
共角几何和射影几何中的变换群
- 批准号:
2109347 - 财政年份:2021
- 资助金额:
$ 44.99万 - 项目类别:
Continuing Grant
Ergodic theory for conformal dynamics with applications to fractal geometry
共形动力学的遍历理论及其在分形几何中的应用
- 批准号:
21K03269 - 财政年份:2021
- 资助金额:
$ 44.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10298072 - 财政年份:2021
- 资助金额:
$ 44.99万 - 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10473754 - 财政年份:2021
- 资助金额:
$ 44.99万 - 项目类别:
CAREER: Liouville Quantum Gravity, Two-Dimensional Random Geometry, and Conformal Field Theory
职业:刘维尔量子引力、二维随机几何和共形场论
- 批准号:
2046514 - 财政年份:2021
- 资助金额:
$ 44.99万 - 项目类别:
Continuing Grant
The Complex and Conformal Geometry of 4-Manifolds
4-流形的复杂共形几何
- 批准号:
1906267 - 财政年份:2019
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant














{{item.name}}会员




