Geometric Inequalities and Fully Nonlinear Elliptic Equations
几何不等式和完全非线性椭圆方程
基本信息
- 批准号:1205350
- 负责人:
- 金额:$ 12.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-15 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Principal Investigator (PI) will study various geometric inequalities and their corresponding nonlinear partial differential equations in the context of conformal geometry and the geometry of submanifolds. One theme plans to investigate the effect of the higher order curvatures on the validity of the isoperimetric inequality. In particular, she intends to quantitatively analyze the interaction between the Q-curvature and the isoperimetric constant. The PI also proposes to study curvature inequalities of different orders for embedded submanifolds. These inequalities, originally considered in the context of convex geometry, have recently known to be valid on a very large class of non-convex domains. The PI's investigation strives to look for the full generality of such inequalities. In the meanwhile, she also aims to develop new skills to understand the corresponding fully nonlinear elliptic partial differential equations that arise naturally in the problem.In the proposed study, the PI's research interest lies at the intersection of conformal geometry, the geometry of submanifolds and partial differential equations (PDEs). The study of geometric inequalities and geometric PDEs focuses on conformal invariants, which form an important machinery from physicists' point of view and have found applications to fundamental principles in mathematical physics. The research project to generalize classical results of convex geometry will improve our understanding on the rigidity of the established theory and will shed light on a greatly larger scope of its application.
首席研究员(PI)将在共形几何和子流形几何的背景下研究各种几何不等式及其相应的非线性偏微分方程。其中一个主题计划研究高阶曲率对等周不等式有效性的影响。特别是,她打算定量分析 Q 曲率和等周常数之间的相互作用。 PI 还建议研究嵌入式子流形的不同阶曲率不等式。这些不等式最初是在凸几何的背景下考虑的,最近发现它们在很大一类非凸域上是有效的。 PI 的调查力求找出此类不平等现象的全部普遍性。与此同时,她还致力于开发新技能来理解问题中自然产生的相应的完全非线性椭圆偏微分方程。在拟议的研究中,PI的研究兴趣在于共形几何、子流形几何和偏微分方程(PDE)的交叉点。几何不等式和几何偏微分方程的研究重点是共形不变量,从物理学家的角度来看,它构成了一种重要的机制,并已在数学物理的基本原理中得到应用。推广凸几何经典结果的研究项目将提高我们对已建立理论的刚性的理解,并将揭示其更大范围的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi Wang其他文献
Plasma protein binding rate of difloxacin in crucian carp Carassais auratus gibelio: Plasma protein binding rate of difloxacin in crucian carp Carassais auratus gibelio
二氟沙星在银鲫体内的血浆蛋白结合率: 二氟沙星在银鲫体内的血浆蛋白结合率
- DOI:
10.3724/sp.j.1118.2012.00721 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Haixin Zhang;K. Hu;J. Ruan;Weidong Zhen;Xian;Huicong Wang;R. Ou;Yi Wang - 通讯作者:
Yi Wang
Preparation and Characterization of MoB Coating on Mo Substrate
Mo基体上MoB涂层的制备及表征
- DOI:
10.3390/met8020093 - 发表时间:
2018-01 - 期刊:
- 影响因子:2.9
- 作者:
Yi Wang;Haiyan Shi;Jianhui Yan;Dezhiu Wang - 通讯作者:
Dezhiu Wang
Plant Process for the Preparation of Cinchona Alkaloid-Based Thiourea Catalysts
制备金鸡纳生物碱基硫脲催化剂的植物工艺
- DOI:
10.1021/acs.oprd.7b00049 - 发表时间:
2017 - 期刊:
- 影响因子:3.4
- 作者:
Yi Wang;Karen L. Milkiewicz;M. Kaufman;Linli He;N. Landmesser;Daniel V. Levy;P. AllweinShawn;Christie Michael;M. A. Olsen;Christopher J. Neville;K. Muthukumaran - 通讯作者:
K. Muthukumaran
Resolving the public-sector wage premium puzzle by indirect inference
通过间接推理解决公共部门工资溢价难题
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2.2
- 作者:
P. Minford;Yi Wang;Pengtao Zhou - 通讯作者:
Pengtao Zhou
CDK9 inhibition improves diabetic nephropathy by reducing inflammation in the kidneys.
CDK9 抑制通过减少肾脏炎症来改善糖尿病肾病
- DOI:
10.1016/j.taap.2021.115465 - 发表时间:
2021-02 - 期刊:
- 影响因子:3.8
- 作者:
Xiaojing Yang;Wu Luo;Li Li;Xiang Hu;Mingjiang Xu;Yi Wang;Jianpeng Feng;Jianchang Qian;Xinfu Guan;Yunjie Zhao;Guang Liang - 通讯作者:
Guang Liang
Yi Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi Wang', 18)}}的其他基金
Collaborative Research: IRES Track I: Undergraduate Interdisciplinary Research in Spain on Smart Connected Systems (UIRiSCS)
合作研究:IRES 第一轨:西班牙智能互联系统本科跨学科研究 (UIRiSCS)
- 批准号:
2153667 - 财政年份:2022
- 资助金额:
$ 12.02万 - 项目类别:
Standard Grant
Programmable Microwave Hardware Based on Liquid Wires (PROGRAMMABLE)
基于液线的可编程微波硬件(PROGRAMMABLE)
- 批准号:
EP/V008382/1 - 财政年份:2021
- 资助金额:
$ 12.02万 - 项目类别:
Research Grant
Arveson-Douglas Conjecture and Its Applications
阿维森-道格拉斯猜想及其应用
- 批准号:
2101370 - 财政年份:2020
- 资助金额:
$ 12.02万 - 项目类别:
Continuing Grant
CAREER: Conformal Geometry and Monge-Ampere Type Equations
职业:共形几何和 Monge-Ampere 型方程
- 批准号:
1845033 - 财政年份:2019
- 资助金额:
$ 12.02万 - 项目类别:
Continuing Grant
Arveson-Douglas Conjecture and Its Applications
阿维森-道格拉斯猜想及其应用
- 批准号:
1900076 - 财政年份:2019
- 资助金额:
$ 12.02万 - 项目类别:
Continuing Grant
Geometric Analysis in Conformal Geometry and Fully Nonlinear Elliptic Partial Differential Equations
共形几何和全非线性椭圆偏微分方程中的几何分析
- 批准号:
1612015 - 财政年份:2016
- 资助金额:
$ 12.02万 - 项目类别:
Standard Grant
Synthesis and new applications of multi-port filtering networks
多端口滤波网络综合及新应用
- 批准号:
EP/M013529/1 - 财政年份:2015
- 资助金额:
$ 12.02万 - 项目类别:
Research Grant
Geometric Inequalities and Fully Nonlinear Elliptic Equations
几何不等式和完全非线性椭圆方程
- 批准号:
1547878 - 财政年份:2014
- 资助金额:
$ 12.02万 - 项目类别:
Standard Grant
相似海外基金
Rural Co-Design and Collaboration: Maximising Rural Community Assets to Reduce Place-Based Health Inequalities
农村共同设计与协作:最大化农村社区资产以减少基于地点的健康不平等
- 批准号:
AH/Z505559/1 - 财政年份:2024
- 资助金额:
$ 12.02万 - 项目类别:
Research Grant
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 12.02万 - 项目类别:
What are the implications of health inequalities such as parental education and household income in BAME 11-16 year old's mental health in Wales
父母教育和家庭收入等健康不平等对威尔士 BAME 11-16 岁心理健康有何影响
- 批准号:
2875399 - 财政年份:2024
- 资助金额:
$ 12.02万 - 项目类别:
Studentship
Analysing Earnings from Creative Education and Creative Work: Decomposing University, Industry and Social Inequalities.
分析创意教育和创意工作的收入:分解大学、工业和社会不平等。
- 批准号:
ES/Z502455/1 - 财政年份:2024
- 资助金额:
$ 12.02万 - 项目类别:
Fellowship
Bridging the Gender Data Gap: Using Census Data to Understand Gender Inequalities Across the UK
缩小性别数据差距:利用人口普查数据了解英国各地的性别不平等
- 批准号:
ES/Z502753/1 - 财政年份:2024
- 资助金额:
$ 12.02万 - 项目类别:
Research Grant
National Partnership to tackle Health Inequalities in Coastal Communities
国家伙伴关系解决沿海社区的健康不平等问题
- 批准号:
AH/Z505419/1 - 财政年份:2024
- 资助金额:
$ 12.02万 - 项目类别:
Research Grant
ReHousIn - Contextualized pathways to reduce housing inequalities in the green and digital transition
ReHousIn - 减少绿色和数字转型中住房不平等的情境化途径
- 批准号:
10092240 - 财政年份:2024
- 资助金额:
$ 12.02万 - 项目类别:
EU-Funded
Making Every Community Asset Count: Improving Health and Reducing Inequalities for People Experiencing Homelessness
让每一项社区资产发挥作用:改善无家可归者的健康并减少不平等
- 批准号:
AH/Z505389/1 - 财政年份:2024
- 资助金额:
$ 12.02万 - 项目类别:
Research Grant
Tackling Health Inequalities with and for the Deaf BSL-Using Communities in Wales
与威尔士使用 BSL 的聋人社区一起解决健康不平等问题
- 批准号:
AH/Z505432/1 - 财政年份:2024
- 资助金额:
$ 12.02万 - 项目类别:
Research Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 12.02万 - 项目类别:
Research Grant














{{item.name}}会员




