EAGER: Gaining Visibility into Supply Network Risks with Large-Scale Textual Analysis

EAGER:通过大规模文本分析了解供应网络风险

基本信息

  • 批准号:
    1547987
  • 负责人:
  • 金额:
    $ 17.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-15 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Globalization and the quest for lean production have significantly increased vulnerability of contemporary supply chains. A disruptive event in Bangkok can stop production in Beijing, and in turn hamper product delivery in Boston. Such events materialize in various, sometimes unexpected forms: natural disasters, labor protests, utility outage, cyber-attacks, political shifts, and epidemic outbreaks, to name a few. They can lead to cascading supply chain failures and business continuity interruptions, with potentially severe near- and long-term physical, financial, and reputational consequences. The key barrier to the effective management of supply chain disruptions is the limited visibility into the interconnected supply network structure and the associated risk profiles. For example, the Department of Defense has specifically highlighted limited visibility of supply chain structures and risks as items of high strategic risks in 2015. This EArly-concept Grant for Exploratory Research (EAGER) project directly addresses this challenge. It develops predictive analytics, risk learning and mitigation strategies that can be readily deployed by firms and organizations to increase visibility and control of their supply chain risks. The data driven approach is particularly useful to organizations with complex supply chains, such as multinational firms and governmental agencies, to better measure the distribution and impact of supply network risks, and proactively manage such risks and achieve better supply chain resilience. While existing theories assume perfect knowledge of supply network structure and the associated risk profiles, this research follows a two-pronged approach to directly account for and mitigate limited visibility. First, it develops a series of empirical models that increase visibility into supply chain risks and their driving factors, with a particular emphasis on network-driven risk interdependencies. It is the first research to combine automated textual analysis (topic coding and sentiment analysis) and high-dimensional statistical analysis, to isolate supply risk information from large scale, qualitative data. Specifically, the project will quantify the language of corporate disclosures and user generated content on social media to 1) characterize risk distributions and interdependencies, 2) quantify the impacts of these risks on both immediate and sub-tier supply chain partners, and 3) identify early-warning factors and develop predictive models for risk events. Second, leveraging insights gained from the empirical results, this project develops new quantitative models on risk learning and mitigation that address and account for limited visibility. One class of models focuses on optimal risk learning given complete knowledge of supply network but incomplete knowledge of risks. The other class of models focuses on designing optimal risk mitigation strategies with general incomplete information. The model addresses effectiveness of direct (procuring excess inventory and multi-sourcing) versus indirect (supply contracts) mitigation strategies in a game-theoretic framework.
全球化和对精益生产的追求大大增加了当代供应链的脆弱性。曼谷的一次破坏性事件可能会导致北京的生产停产,进而阻碍波士顿的产品交付。这类事件以各种有时是意想不到的形式出现:自然灾害、劳工抗议、公用事业停电、网络攻击、政治转变和疫情爆发,仅举几例。它们可能导致连锁供应链故障和业务连续性中断,可能带来严重的短期和长期物质、财务和声誉后果。有效管理供应链中断的关键障碍是对相互关联的供应网络结构和相关风险概况的可见性有限。例如,国防部特别强调,供应链结构和风险的可见度有限,是2015年的高战略风险项目。这个探索性研究的早期概念补助金(EIGHER)项目直接应对了这一挑战。它开发了预测性分析、风险学习和缓解策略,公司和组织可以随时部署这些策略,以提高对其供应链风险的可见性和控制力。数据驱动的方法对于拥有复杂供应链的组织特别有用,例如跨国公司和政府机构,以更好地衡量供应网络风险的分布和影响,并主动管理此类风险,实现更好的供应链弹性。虽然现有的理论假设完全了解供应网络结构和相关的风险概况,但这项研究遵循双管齐下的方法,直接解释和缓解有限的可见性。首先,它开发了一系列经验模型,提高了对供应链风险及其驱动因素的可见性,特别强调了网络驱动的风险相互依存关系。这是首次将自动文本分析(主题编码和情感分析)与高维统计分析相结合,从大规模的定性数据中分离出提供的风险信息。具体地说,该项目将量化公司披露的语言和社交媒体上用户生成的内容,以1)描述风险分布和相互依赖的特征,2)量化这些风险对直接和次级供应链合作伙伴的影响,以及3)确定早期预警因素并开发风险事件的预测模型。其次,利用从经验结果中获得的洞察力,该项目开发了新的关于风险学习和缓解的量化模型,以解决和解决有限的可见性。其中一类模型着眼于在完全了解供应网络但不完全了解风险的情况下进行最优风险学习。另一类模型侧重于设计一般不完全信息下的最优风险缓解策略。该模型在博弈论框架中讨论了直接(采购过剩库存和多来源)与间接(供应合同)缓解策略的有效性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jun Li其他文献

Upregulation of flotillin-1 promotes invasion and metastasis by activating TGF-β signaling in nasopharyngeal carcinoma
ïotillin-1 的上调通过激活 TGF-β 信号传导促进鼻咽癌的侵袭和转移
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sumei Cao;Yanmei Cui;Huiming Xiao;Miaoqing Mai;Chanjuan Wang;Shanghang Xie;Jing Yang;Shu Wu;Jun Li;Libing Song;Xiang Guo;Chuyong Lin
  • 通讯作者:
    Chuyong Lin
The utility of angiographic CT in the diagnosis and treatment of neurovascular pathologies in the vicinity of cranial base
血管造影CT在颅底附近神经血管病变诊治中的应用
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Jun Li;Feng Wan;Gang Chen;Lianting Ma;Geng Zhang;Guo;J. Gong
  • 通讯作者:
    J. Gong
d-Wave superconductivity via buckling-like phonon mode
通过类屈曲声子模式实现 d 波超导
  • DOI:
    10.1016/j.ssc.2004.10.030
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    D. Tang;Jun Li;C. Gong
  • 通讯作者:
    C. Gong
VLSI design of low-cost and high-precision fixed-point reconfigurable FFT processors
低成本高精度定点可重构FFT处理器的VLSI设计
  • DOI:
    10.1049/iet-cdt.2017.0060
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Hao Xiao;Xiang Yin;Ning Wu;Xin Chen;Jun Li;Xiaoxing Chen
  • 通讯作者:
    Xiaoxing Chen
Out-of-plane dimeric MnIII quadridentate Schiff-base complexes: Synthesis, structure and magnetic properties
面外二聚 MnIII 四齿席夫碱配合物:合成、结构和磁性
  • DOI:
    10.1016/j.ica.2009.03.048
  • 发表时间:
    2009-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ya-Fan Zhao;Chao Wang;Qing-Lun Wang;Yu-Hua Feng;Daizheng Liao;Jun Li;Shi-Ping Yan
  • 通讯作者:
    Shi-Ping Yan

Jun Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jun Li', 18)}}的其他基金

Integrated Multiscale Computational and Experimental Investigations on Fracture of Additively Manufactured Polymer Composites
增材制造聚合物复合材料断裂的综合多尺度计算和实验研究
  • 批准号:
    2309845
  • 财政年份:
    2023
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Standard Grant
Discovery Projects - Grant ID: DP210101100
发现项目 - 拨款 ID:DP210101100
  • 批准号:
    ARC : DP210101100
  • 财政年份:
    2021
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Discovery Projects
Explore Electrocatalysis to Improve the Cathode Performance in Li-S Batteries
探索电催化提高锂硫电池正极性能
  • 批准号:
    2054754
  • 财政年份:
    2021
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Standard Grant
CIF: Small: Coding Techniques for Distributed Machine Learning
CIF:小型:分布式机器学习的编码技术
  • 批准号:
    2101388
  • 财政年份:
    2020
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Standard Grant
Offline and Online Change-point Analysis for Large-scale Time Series Data
大规模时间序列数据的离线和在线变点分析
  • 批准号:
    1916239
  • 财政年份:
    2019
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Continuing Grant
CIF: Small: Coding Techniques for Distributed Machine Learning
CIF:小型:分布式机器学习的编码技术
  • 批准号:
    1910447
  • 财政年份:
    2019
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Standard Grant
A Novel Fuel Cell Catalyst and Support Architecture Based on Edge-site Pyridinic Nitrogen-Doping on Vertically Aligned Conical Carbon Nanofibers
基于垂直排列锥形碳纳米纤维边缘位吡啶氮掺杂的新型燃料电池催化剂和支撑结构
  • 批准号:
    1703263
  • 财政年份:
    2017
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Standard Grant
SUSCHEM: Exploring Specific Heating in Microwave-assisted Synthesis of Hierarchical Hybrid Nanomaterials for Future Sustainable Batteries
SUSCHEM:探索微波辅助合成未来可持续电池的分层混合纳米材料中的比热
  • 批准号:
    1707585
  • 财政年份:
    2017
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Standard Grant
CAREER: Genetic and Molecular Mechanisms of Parasite Infection in Insects
职业:昆虫寄生虫感染的遗传和分子机制
  • 批准号:
    1742644
  • 财政年份:
    2017
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Continuing Grant
TWC: Medium: Collaborative: Online Social Network Fraud and Attack Research and Identification
TWC:媒介:协作:在线社交网络欺诈和攻击研究与识别
  • 批准号:
    1564348
  • 财政年份:
    2016
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Standard Grant

相似海外基金

Gaining insights into mine waste dumps to avoid environmental legacies
深入了解矿山废物堆放场以避免环境遗留问题
  • 批准号:
    LP210100043
  • 财政年份:
    2023
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Linkage Projects
Gaining Insights Into Immune Checkpoint Inhibitor Associated Inflammatory Arthritis Using Administrative Data
使用管理数据深入了解免疫检查点抑制剂相关的炎症性关节炎
  • 批准号:
    495130
  • 财政年份:
    2023
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Operating Grants
Hiding the enemy within: gaining new insights into HIV integration and the establishment and maintenance of latency.
将敌人隐藏在内部:获得对艾滋病毒整合以及潜伏期的建立和维持的新见解。
  • 批准号:
    493467
  • 财政年份:
    2023
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Operating Grants
Gaining Retention and Effectiveness though Advancing Teacher-Centered STEM Professional Learning for STEM Elementary Teachers in Rural Communities
通过促进农村社区 STEM 小学教师以教师为中心的 STEM 专业学习来提高保留率和有效性
  • 批准号:
    2150926
  • 财政年份:
    2023
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Continuing Grant
Social Virtual Reality enabled Learning to Empower Special Education Students in Gaining Competence to Join the Future Technology Workforce
社交虚拟现实使学习能够帮助特殊教育学生获得加入未来技术劳动力的能力
  • 批准号:
    2302596
  • 财政年份:
    2023
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Standard Grant
Gaining insights: the effects of the RMK gain-of-function mutations on brain development and neurodevelopmental disorders
获得见解:RMK 功能获得性突变对大脑发育和神经发育障碍的影响
  • 批准号:
    10688073
  • 财政年份:
    2022
  • 资助金额:
    $ 17.7万
  • 项目类别:
Development of Zirconia Dental Implant Material Gaining Titanium Ability Using Atomic Layer Deposition
利用原子层沉积开发获得钛能力的氧化锆牙科植入材料
  • 批准号:
    22K10046
  • 财政年份:
    2022
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Gaining insights: the effects of the RMK gain-of-function mutations on brain development and neurodevelopmental disorders
获得见解:RMK 功能获得性突变对大脑发育和神经发育障碍的影响
  • 批准号:
    10420859
  • 财政年份:
    2022
  • 资助金额:
    $ 17.7万
  • 项目类别:
Gaining control of the future: The cognitive development of foresight
掌控未来:远见的认知发展
  • 批准号:
    DP210101572
  • 财政年份:
    2021
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Discovery Projects
CAREER: Securing Cyberspace: Gaining Deep Insights into the Online Underground Ecosystem
职业:保护网络空间:深入了解在线地下生态系统
  • 批准号:
    2203261
  • 财政年份:
    2021
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了