EAGER: Using Learning Algorithms to Morph Product Behavior for Specific Task Contexts and Cognitive Styles of Users
EAGER:使用学习算法针对特定任务环境和用户认知风格来改变产品行为
基本信息
- 批准号:1548234
- 负责人:
- 金额:$ 22.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
People have different ways of learning and thinking, termed cognitive styles. Past research in website design has shown that there is a link between cognitive style and user behavior. This project takes this promising foundation and applies it to the design of physical products. This EArly-concept Grant for Exploratory Research (EAGER) project investigates whether or not it is possible to use sensor data and morphing algorithms, a type of learning algorithm, to design a faucet that can "know" what a person wants to do, and how they prefer to do it, via an underlying relationship between cognitive style and behavior. If so, can the faucet be designed in a way that its behavior is adaptable and pleasing to distinct cognitive styles, while also reducing water consumption. Faucets and showers account for 20% of household water usage, yet have received no "smart" design improvements to curtail water use. On the contrary, research shows that current automatic on/off faucets use more water than conventional faucets. If successful, this research will advance the design of household appliances that decrease water consumption.The project objective is to create a design method that uses morphing algorithms to design generative, customized product behavior that responds to the user's cognitive style and the task they are performing. This involves: (1) Reworking existing morphing/learning algorithms to make them generate a customized product behavior, instead of serving-up predetermined design permutations; (2) Creating a protocol to identify meaningful independent variables (sensor data) that serve as the parameters for controling morphing; (3) Incorporating feedback from users, in the form of faucet manual adjustments, to the behavior updating process; and (4) Balancing exploration of the behavior space and exploitation of knowledge gained. The sensor data used in this initial research will be simulated based on a pilot study. The research advances the state of the art in learning algorithms, increasing their usefulness in design by allowing for continuous-space design exploration in response to manual human-in-the-loop user interaction behavior. If successful, it will result in a physical product that is capable of testing the relationship between cognitive style and user interaction. This product will be used in future human-subject experiments, potentially building new cognitive models of user/product interaction.
人们有不同的学习和思考方式,称为认知风格。过去的网站设计研究表明,认知风格和用户行为之间存在联系。本项目将这一有前途的基础,并将其应用到物理产品的设计。这个早期概念探索性研究资助(EAGER)项目调查是否有可能使用传感器数据和变形算法(一种学习算法)来设计一个水龙头,该水龙头可以“知道”一个人想要做什么,以及他们喜欢如何做,通过认知风格和行为之间的潜在关系。如果是这样的话,水龙头的设计是否可以使其行为适应不同的认知方式,同时减少用水量。水龙头和淋浴占家庭用水量的20%,但没有收到“智能”设计改进,以减少用水。相反,研究表明,目前的自动开/关洗碗机比传统洗碗机使用更多的水。如果这项研究成功的话,将推动家用电器的设计,减少水的消耗。该项目的目标是创建一种设计方法,使用变形算法来设计生成,定制的产品行为,响应用户的认知风格和他们正在执行的任务。这包括:(1)重新设计现有的变形/学习算法,使它们生成定制的产品行为,而不是提供预定的设计排列;(2)创建一个协议来识别有意义的自变量(3)将来自用户的反馈以水龙头手动调节的形式传递给行为更新过程;(4)平衡对行为空间的探索和对知识的利用。 在初步研究中使用的传感器数据将根据试点研究进行模拟。该研究推进了学习算法的最新技术水平,通过允许连续空间设计探索来响应手动人在环用户交互行为,从而增加了它们在设计中的有用性。如果成功,它将产生一个能够测试认知风格和用户交互之间关系的物理产品。该产品将用于未来的人类受试者实验,可能会建立新的用户/产品交互的认知模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erin MacDonald其他文献
Muslims in Canada: exploring collective identities
加拿大的穆斯林:探索集体身份
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Erin MacDonald - 通讯作者:
Erin MacDonald
What Do Patients and Families Want From a Child Neurology Consultation?
患者和家属希望从儿童神经科咨询中得到什么?
- DOI:
10.1177/0883073813511857 - 发表时间:
2014 - 期刊:
- 影响因子:1.9
- 作者:
J. Dooley;K. Gordon;P. Brna;E. Wood;Ismail S Mohamed;Erin MacDonald;C. Jackson - 通讯作者:
C. Jackson
Erin MacDonald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erin MacDonald', 18)}}的其他基金
Collaborative Research: Increasing Solar Panel Adoption by Modeling the Interrelated Impacts of Design Decisions, Industry Incentives, Public Policies, and Market Response
合作研究:通过对设计决策、行业激励、公共政策和市场反应的相互影响进行建模来提高太阳能电池板的采用率
- 批准号:
1363254 - 财政年份:2014
- 资助金额:
$ 22.68万 - 项目类别:
Standard Grant
Consideration, Design, and Energy Policy
考虑、设计和能源政策
- 批准号:
1518710 - 财政年份:2014
- 资助金额:
$ 22.68万 - 项目类别:
Standard Grant
Collaborative Research: Increasing Solar Panel Adoption by Modeling the Interrelated Impacts of Design Decisions, Industry Incentives, Public Policies, and Market Response
合作研究:通过对设计决策、行业激励、公共政策和市场反应的相互影响进行建模来提高太阳能电池板的采用率
- 批准号:
1463717 - 财政年份:2014
- 资助金额:
$ 22.68万 - 项目类别:
Standard Grant
Consideration, Design, and Energy Policy
考虑、设计和能源政策
- 批准号:
1334764 - 财政年份:2013
- 资助金额:
$ 22.68万 - 项目类别:
Standard Grant
相似国自然基金
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
EAGER: Integrating Multi-Omics Biological Networks and Ontologies for lncRNA Function Annotation using Deep Learning
EAGER:使用深度学习集成多组学生物网络和本体以进行 lncRNA 功能注释
- 批准号:
2400785 - 财政年份:2023
- 资助金额:
$ 22.68万 - 项目类别:
Standard Grant
EAGER: North American Monsoon Prediction Using Causality Informed Machine Learning
EAGER:使用因果关系信息机器学习来预测北美季风
- 批准号:
2313689 - 财政年份:2023
- 资助金额:
$ 22.68万 - 项目类别:
Standard Grant
EAGER: Using machine learning to develop a calibrated, remote sensing-based age model to improve late Quaternary slip-rate estimates in arid environments
EAGER:利用机器学习开发基于遥感的校准年龄模型,以改善干旱环境中第四纪晚期滑移率的估计
- 批准号:
2233310 - 财政年份:2022
- 资助金额:
$ 22.68万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Generation of High Resolution Surface Melting Maps over Antarctica using Regional Climate Models, Remote Sensing and Machine Learning
合作研究:EAGER:利用区域气候模型、遥感和机器学习生成南极洲高分辨率表面融化地图
- 批准号:
2136938 - 财政年份:2022
- 资助金额:
$ 22.68万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Generation of High Resolution Surface Melting Maps over Antarctica Using Regional Climate Models, Remote Sensing and Machine Learning
合作研究:EAGER:利用区域气候模型、遥感和机器学习生成南极洲高分辨率表面融化地图
- 批准号:
2136940 - 财政年份:2022
- 资助金额:
$ 22.68万 - 项目类别:
Standard Grant
EAGER: Using machine learning to develop a calibrated, remote sensing-based age model to improve late Quaternary slip-rate estimates in arid environments
EAGER:利用机器学习开发基于遥感的校准年龄模型,以改善干旱环境中第四纪晚期滑移率的估计
- 批准号:
2210203 - 财政年份:2022
- 资助金额:
$ 22.68万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Generation of High Resolution Surface Melting Maps over Antarctica Using Regional Climate Models, Remote Sensing and Machine Learning
合作研究:EAGER:利用区域气候模型、遥感和机器学习生成南极洲高分辨率表面融化地图
- 批准号:
2136939 - 财政年份:2022
- 资助金额:
$ 22.68万 - 项目类别:
Standard Grant
EAGER: ADAPT: Hypotheses Generation in Heterogeneous Catalysis using Causal Inference and Machine Learning
EAGER:ADAPT:使用因果推理和机器学习在异质催化中生成假设
- 批准号:
2231174 - 财政年份:2022
- 资助金额:
$ 22.68万 - 项目类别:
Standard Grant
EAGER: Principles of Motor Skills (re)Learning When Using Powered Exoskeletons
EAGER:使用动力外骨骼时(重新)学习运动技能的原则
- 批准号:
2037644 - 财政年份:2021
- 资助金额:
$ 22.68万 - 项目类别:
Standard Grant
EAGER: Principles of Motor Skills (re)Learning When Using Powered Exoskeletons
EAGER:使用动力外骨骼时(重新)学习运动技能的原则
- 批准号:
2207515 - 财政年份:2021
- 资助金额:
$ 22.68万 - 项目类别:
Standard Grant