EAGER: Integrating Multi-Omics Biological Networks and Ontologies for lncRNA Function Annotation using Deep Learning
EAGER:使用深度学习集成多组学生物网络和本体以进行 lncRNA 功能注释
基本信息
- 批准号:2400785
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-12-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Long non-coding RNAs (lncRNAs) are a class of ribonucleic acid (RNA) molecules longer than 200 nucleotides that do not encode proteins but play important regulatory roles in various biological and cellular processes such as cancer metastasis, therapeutic targets, immune responses, chromatin remodeling, and embryonic development. Despite exciting findings in recent years, the functions of most lncRNAs remain largely unknown as they are often transcribed from non-coding regions of the genome. Their functions are not always clear and lack conservation across species. The project aims to develop an efficient graph neural network method called Layer-stacked ATTention Embedding to Gene Ontology (LATTE2GO) to reliably annotate lncRNA functions describing each with various gene ontology features including molecular function, biological process, and cellular component. Research activities will engage minorities, women, and undergraduates performing interdisciplinary research through the Girl Engineering Summer Camp, Louis Stokes Alliances for Minority Participation Summer Research Academy, and the McNair programs at the University of Texas at Arlington. The research will aggregate gene ontology structure and multiple interactions between genes, transcripts, and proteins as a knowledge graph containing heterogeneous relationships. The project will (1) extract higher-order multi-omics interrelations from heterogenous interactions as well as multi-relational associations; (2) develop representation learning of lncRNA functions from multiple relationships in the hierarchical gene ontology within the same message-passing framework; and (3) explore attention graph neural networks to effectively aggregate heterogeneous interactions and gene ontology term pertinencies. By extracting higher-order associations and weighting them via attention, LATTE2GO aims to achieve significant gains over previous graph-based function prediction techniques. In addition, the architecture has the advantage of learning features directly from complete hierarchical ontology and connecting with lncRNA network relations in an end-to-end manner. The novel framework could be extended to integrating multiple heterogeneous data sources for generic computational and data science problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
长链非编码RNA(lncRNA)是一类长度超过200个核苷酸的核糖核酸(RNA)分子,不编码蛋白质,但在各种生物和细胞过程中发挥重要的调节作用,如癌症转移,治疗靶点,免疫反应,染色质重塑和胚胎发育。尽管近年来有了令人兴奋的发现,但大多数lncRNA的功能在很大程度上仍然未知,因为它们通常从基因组的非编码区转录。它们的功能并不总是明确的,而且缺乏跨物种的保护。 该项目旨在开发一种高效的图神经网络方法,称为Layer-stacked ATTention Embedding to Gene Ontology(LATTE 2GO),以可靠地注释lncRNA功能,这些功能描述了各种基因本体特征,包括分子功能,生物过程和细胞成分。研究活动将通过女孩工程夏令营,路易斯斯托克斯少数民族参与夏季研究学院联盟和德克萨斯大学阿灵顿的麦克奈尔计划进行跨学科研究。该研究将聚合基因本体结构和基因,转录本和蛋白质之间的多种相互作用作为包含异质关系的知识图。该项目将(1)从异质相互作用以及多关系关联中提取高阶多组学相互关系;(2)在相同的消息传递框架内,从分层基因本体中的多个关系中开发lncRNA功能的表示学习;(3)探索注意力图神经网络,以有效地聚合异质相互作用和基因本体术语相关性。 通过提取高阶关联并通过注意力对其进行加权,LATTE 2GO的目标是实现比以前基于图的函数预测技术更大的收益。此外,该架构具有直接从完整的层次本体中学习特征并以端到端的方式与lncRNA网络关系连接的优点。这个新的框架可以扩展到集成多个异构数据源,以解决通用计算和数据科学问题。这个奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junzhou Huang其他文献
Adversarial Domain Adaptation for Cell Segmentation
细胞分割的对抗域适应
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
M. M. Haq;Junzhou Huang - 通讯作者:
Junzhou Huang
Feature Matching with Affine-Function Transformation Models
与仿射函数变换模型的特征匹配
- DOI:
10.1109/tpami.2014.2324568 - 发表时间:
2014-05 - 期刊:
- 影响因子:23.6
- 作者:
Hongsheng Li;Xiaolei Huang;Junzhou Huang;Shaoting Zhang - 通讯作者:
Shaoting Zhang
Equivariant Graph Mechanics Networks with Constraints
具有约束的等变图力学网络
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Wen;J. Han;Yu Rong;Tingyang Xu;Fuchun Sun;Junzhou Huang - 通讯作者:
Junzhou Huang
Can AI-assisted microscope facilitate breast HER2 interpretation? A multi-institutional ring study
AI辅助显微镜能否促进乳腺HER2解读?
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:3.5
- 作者:
M. Yue;Jun Zhang;Xinran Wang;Kezhou Yan;Lijing Cai;Kuan Tian;Shuyao Niu;Xiao Han;Yongqiang Yu;Junzhou Huang;Dandan Han;Jianhua Yao;Yueping Liu - 通讯作者:
Yueping Liu
Recent Advances in Reliable Deep Graph Learning: Adversarial Attack, Inherent Noise, and Distribution Shift
可靠深度图学习的最新进展:对抗性攻击、固有噪声和分布偏移
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Bingzhe Wu;Jintang Li;Chengbin Hou;Guoji Fu;Yatao Bian;Liang Chen;Junzhou Huang - 通讯作者:
Junzhou Huang
Junzhou Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junzhou Huang', 18)}}的其他基金
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
- 批准号:
2412195 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: A Topological Analysis of Uncertainly Representation in the Brain
RI:小:协作研究:大脑中不确定表征的拓扑分析
- 批准号:
1718853 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Large Scale Learning for Complex Image-Omics Data Analytics
职业:复杂图像组学数据分析的大规模学习
- 批准号:
1553687 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: Robust Materials Genome Data Mining Framework for Prediction and Guidance of Nanoparticle Synthesis
III:小型:协作研究:用于预测和指导纳米颗粒合成的稳健材料基因组数据挖掘框架
- 批准号:
1423056 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Integrating subcellular multi-omics to identify druggable metabolic markers of latent HIV infection in CD4 T-cells
整合亚细胞多组学来识别 CD4 T 细胞中潜在 HIV 感染的可药物代谢标志物
- 批准号:
MR/Y013093/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Integrating Large Language Models for Long Horizon Task Planning in Multi-robot Scenarios
集成大型语言模型以实现多机器人场景中的长期任务规划
- 批准号:
24K07399 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-ethnic risk prediction for complex human diseases integrating multi-source genetic and non-genetic information
整合多源遗传与非遗传信息的人类复杂疾病多民族风险预测
- 批准号:
10754773 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Integrating people marginalized by structural inequities in chronic pain research and clinical care: lessons from a long-standing multi-disciplinary team
将因结构性不平等而边缘化的人们纳入慢性疼痛研究和临床护理:来自长期多学科团队的经验教训
- 批准号:
485102 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Operating Grants
Integrating genome, other layers of omics, and non-genetic data to improve understanding of the etiology of human diseases in multi-ethnic populations
整合基因组、组学的其他层面和非遗传数据,以提高对多种族人群中人类疾病病因学的理解
- 批准号:
10749846 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Integrating multi-taxa biodiversity conservation into upland ecosystem service land-use models
将多类群生物多样性保护纳入高地生态系统服务土地利用模型
- 批准号:
2881781 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312502 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Integrating multi-omics, imaging, and longitudinal data to predict radiation response in cervical cancer
整合多组学、成像和纵向数据来预测宫颈癌的放射反应
- 批准号:
10734702 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
III : Small : Integrating and Learning on Spatial Data via Multi-Agent Simulation
III:小:通过多智能体模拟集成和学习空间数据
- 批准号:
2311954 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant