EAGER: Robots that Learn to Communicate with Humans Tthrough Natural Dialog
EAGER:通过自然对话学习与人类交流的机器人
基本信息
- 批准号:1548567
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This EArly Grant for Exploratory Research explores the possibility of developing more user-friendly and capable robots that learn to understand commands in natural human language. The experimental system developed aims to engage users in natural conversation, clarifying linguistic instructions that cannot be understood, and learning from this interaction to more robustly interpret future commands. This fundamentally new approach is hypothesized to overcome limitations of more-costly previous approaches that require either direct programming or detailed annotation of per-assembled linguistic data, and still frequently fail to cover issues that arise in real user interactions. The resulting exploratory prototype is evaluated on real interactions with human users, experimentally testing its ability to improve its accuracy and flexibility at interpreting human instructions over time, through normal everyday use. This novel approach aims to improve human interaction with intelligent multi-robot systems that aid the residents and visitors of a large, multi-use building. This fundamental research also supports computer-science education in the growing areas of natural-language processing, human-robot interaction, and machine learning, where there is significant national demand for knowledgeable personnel.The technical approach explored is a novel integration of learning techniques from three currently disparate areas: semantic parsing, spoken dialog management, and perceptual language grounding. Semantic parsing is the task of mapping natural language to a formal computer-interpretable language using compositional semantics based on syntactic linguistic structure. Dialog management concerns controlling multi-turn natural language interaction to aid comprehension and task completion. Perceptual grounding concerns associating words and phrases in language to objects, properties and relations in the world as perceived by the robot's sensors. Although there has been recent significant progress in each of these individual areas, no one has previously explored integrating them to support learning for human-robot communication through natural dialog. This exploratory research adapts and integrates techniques for semantic-parser learning using combinatory categorial grammar, dialog management using Partially Observable Markov Decision Processes, and multi-modal language grounding using both visual and haptic sensors, in order to develop a novel dialog system for communicating with robots that comprise the innovative Building Wide Intelligence system being developed at the University of Texas at Austin. The exploratory methods are evaluated using controlled experiments on a range of tasks using both on-line simulations and crowdsourced users, and natural user interaction with a mobile robot platform consisting of a wheeled Segway base and a Kinova robot arm.
EArly的探索性研究资助探索了开发更用户友好和有能力的机器人的可能性,这些机器人可以学习理解自然人类语言中的命令。开发的实验系统旨在让用户参与自然对话,澄清无法理解的语言指令,并从这种交互中学习,以更强大地解释未来的命令。假设这种全新的方法可以克服成本更高的先前方法的局限性,这些方法需要直接编程或详细注释预组装的语言数据,并且仍然经常无法覆盖真实的用户交互中出现的问题。由此产生的探索性原型评估与人类用户的真实的交互,实验测试其能力,以提高其准确性和灵活性,随着时间的推移,通过正常的日常使用解释人类的指令。这种新颖的方法旨在改善人类与智能多机器人系统的互动,帮助大型多用途建筑的居民和游客。这项基础研究也支持计算机科学教育在自然语言处理,人机交互和机器学习,有显着的国家需求的知识渊博的人才。探索的技术方法是一种新的集成学习技术从三个目前不同的领域:语义解析,口语对话管理,感知语言基础。语义分析是基于句法语言结构,使用组合语义将自然语言映射为正式的计算机可解释语言的任务。对话管理涉及控制多轮自然语言交互以帮助理解和任务完成。感知基础涉及将语言中的单词和短语与机器人传感器感知到的世界中的对象,属性和关系相关联。虽然最近在这些领域都取得了重大进展,但以前没有人探索过将它们集成到支持通过自然对话进行人机交流的学习中。这项探索性的研究适应和整合语义分析器学习使用组合类别语法,对话管理使用部分可观察马尔可夫决策过程,和多模态语言接地使用视觉和触觉传感器的技术,以开发一种新的对话系统与机器人进行通信,包括创新的建筑物广泛的智能系统正在开发的得克萨斯大学奥斯汀分校。探索性的方法进行评估,使用控制实验的一系列任务,使用在线模拟和众包用户,和自然的用户交互与移动的机器人平台组成的轮式赛格威基地和Kinova机器人手臂。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-Modal Word Synset Induction
多模态词同义词集归纳
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Tomason, J.;Mooney, R.J.
- 通讯作者:Mooney, R.J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raymond Mooney其他文献
Dialogue with Robots: Proposals for Broadening Participation and Research in the SLIVAR Community
与机器人对话:扩大 SLIVAR 社区参与和研究的提案
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Casey Kennington;Malihe Alikhani;Heather Pon;Katherine Atwell;Yonatan Bisk;Daniel Fried;Felix Gervits;Zhao Han;Mert Inan;Michael Johnston;Raj Korpan;Diane Litman;M. Marge;Cynthia Matuszek;Ross Mead;Shiwali Mohan;Raymond Mooney;Natalie Parde;Jivko Sinapov;Angela Stewart;Matthew Stone;Stefanie Tellex;Tom Williams - 通讯作者:
Tom Williams
Sparse Meets Dense: A Hybrid Approach to Enhance Scientific Document Retrieval
稀疏与密集:增强科学文档检索的混合方法
- DOI:
10.48550/arxiv.2401.04055 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Priyanka Mandikal;Raymond Mooney - 通讯作者:
Raymond Mooney
Raymond Mooney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raymond Mooney', 18)}}的其他基金
NRI: FND: Improving Robot Learning from Feedback and Demonstration using Natural Language
NRI:FND:使用自然语言通过反馈和演示改进机器人学习
- 批准号:
1925082 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
NRI: Robots that Learn to Communicate through Natural Human Dialog
NRI:通过自然人类对话学习交流的机器人
- 批准号:
1637736 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
RI: Small: Perceptually Grounded Learning of Instructional Language
RI:小:教学语言的感知基础学习
- 批准号:
1016312 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
RI: Learning Language Semantics from Perceptual Context
RI:从感知上下文中学习语言语义
- 批准号:
0712097 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
ITR: Feedback from Multi-Source Data Mining to Experimentation for Gene Network Discovery
ITR:从多源数据挖掘到基因网络发现实验的反馈
- 批准号:
0325116 - 财政年份:2003
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Text Data Mining Using Information Extraction
使用信息提取的文本数据挖掘
- 批准号:
0117308 - 财政年份:2001
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Symbolic Learning for Natural Language Processing: Integrating Information Extraction and Querying
自然语言处理的符号学习:集成信息提取和查询
- 批准号:
9704943 - 财政年份:1997
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Learning Search-Control Heuristics for Logic Programs: Applications to Speedup Learning and Language Acquisition
逻辑程序的学习搜索控制启发式:加速学习和语言习得的应用
- 批准号:
9310819 - 财政年份:1994
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Refining Concepts And Domain Theories By Combining Explanation-Based And Empirical Learning
通过结合基于解释的学习和实证学习来完善概念和领域理论
- 批准号:
9102926 - 财政年份:1991
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似海外基金
How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
- 批准号:
2594635 - 财政年份:2025
- 资助金额:
$ 15万 - 项目类别:
Studentship
Home helper robots: Understanding our future lives with human-like AI
家庭帮手机器人:用类人人工智能了解我们的未来生活
- 批准号:
FT230100021 - 财政年份:2025
- 资助金额:
$ 15万 - 项目类别:
ARC Future Fellowships
CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
- 批准号:
2422698 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Supporting Elementary Students’ Computer Science Skills and Interest through Engagement with Low-cost, Adaptable Robots
通过与低成本、适应性强的机器人互动来支持小学生的计算机科学技能和兴趣
- 批准号:
2342489 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
PFI-TT: Vine Robots for In-Pipe Navigation and Inspection of Critical Infrastructure
PFI-TT:用于管道内导航和关键基础设施检查的 Vine 机器人
- 批准号:
2345769 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Usability and Ergonomics of wearable robots
可穿戴机器人的可用性和人体工程学
- 批准号:
10087481 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Collaborative R&D
CAREER: Acoustic Vortex Robots for Contactless 6-Degrees-of-Freedom Object Manipulation
职业:用于非接触式 6 自由度物体操纵的声学涡旋机器人
- 批准号:
2340016 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
STTR Phase I: Weed Control Via Terradynamically Robust Robots
STTR 第一阶段:通过地形动力学鲁棒机器人控制杂草
- 批准号:
2335553 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
AerialHitches: Forming and Controlling Hitches for Fully Autonomous Transportation Using Aerial Robots with Cables
空中挂钩:使用带有电缆的空中机器人形成和控制全自动运输的挂钩
- 批准号:
2322840 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Safe Autonomy for Soft Robots
职业:软机器人的安全自主
- 批准号:
2340111 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant