ITR: Feedback from Multi-Source Data Mining to Experimentation for Gene Network Discovery
ITR:从多源数据挖掘到基因网络发现实验的反馈
基本信息
- 批准号:0325116
- 负责人:
- 金额:$ 170万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-10-15 至 2008-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Gene function is known for only about half of the roughly 30 to 35 thousand human genes. There are many diverse experimental sources of data for determining gene function (e.g. sequence, expression, and proteomic data). Analysis methods for each data source have their individual strengths and are maturing, while the returns from these existing algorithms are diminishing. To expand the scope of discovery this effort brings together diverse researchers within Computer Science and Biology in order to develop and apply data mining methods that analyze multiple sources of multiple experimental data types. The goal is to discover gene networks for human and yeast genes. These methods are able to identify and support biological hypothesis that are overlooked when data from a single experimental methodology is analyzed in isolation. Discovery of gene networks for human and yeast genes promises to address such grand challenge problems as determining the fundamental organization of genes in the cell and creating a theoretical framework for interpreting high-throughput biological data, moving ultimately towards predictive theoretical models of biology and understanding disease at the cellular level.The project will also help establish a broad center of excellence in computational biology at the University of Texas. In addition to the dissemination of new algorithms through the project Web site {http://bioinformatics.icmb.utexas.edu} and scientific publications, newly derived gene functions will be submitted to public biological databases suchas BIND (Biomolecular Interaction Network Database) and DIP (Database ofInteraction Proteins).
在大约3万到35000个人类基因中,人们只知道大约一半的基因具有基因功能。有许多不同的实验数据来源来确定基因功能(例如序列、表达和蛋白质组数据)。每种数据源的分析方法都有其各自的长处,并正在成熟,而这些现有算法的回报正在减少。为了扩大发现的范围,这项工作将计算机科学和生物学领域的不同研究人员聚集在一起,以开发和应用数据挖掘方法,分析多种实验数据类型的多个来源。其目标是发现人类和酵母基因的基因网络。这些方法能够识别和支持当孤立地分析来自单一实验方法学的数据时被忽视的生物学假说。人类和酵母菌基因网络的发现有望解决诸如确定细胞中基因的基本组织和创建解释高通量生物学数据的理论框架、最终走向生物学预测理论模型和在细胞水平上理解疾病等重大挑战问题。该项目还将有助于在德克萨斯大学建立一个广泛的计算生物学卓越中心。除了通过项目网站和科学出版物传播新的算法外,新获得的基因功能将提交给公共生物数据库,如BIND(生物分子相互作用网络数据库)和DIP(作用蛋白质数据库)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raymond Mooney其他文献
Dialogue with Robots: Proposals for Broadening Participation and Research in the SLIVAR Community
与机器人对话:扩大 SLIVAR 社区参与和研究的提案
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Casey Kennington;Malihe Alikhani;Heather Pon;Katherine Atwell;Yonatan Bisk;Daniel Fried;Felix Gervits;Zhao Han;Mert Inan;Michael Johnston;Raj Korpan;Diane Litman;M. Marge;Cynthia Matuszek;Ross Mead;Shiwali Mohan;Raymond Mooney;Natalie Parde;Jivko Sinapov;Angela Stewart;Matthew Stone;Stefanie Tellex;Tom Williams - 通讯作者:
Tom Williams
Sparse Meets Dense: A Hybrid Approach to Enhance Scientific Document Retrieval
稀疏与密集:增强科学文档检索的混合方法
- DOI:
10.48550/arxiv.2401.04055 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Priyanka Mandikal;Raymond Mooney - 通讯作者:
Raymond Mooney
Raymond Mooney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raymond Mooney', 18)}}的其他基金
NRI: FND: Improving Robot Learning from Feedback and Demonstration using Natural Language
NRI:FND:使用自然语言通过反馈和演示改进机器人学习
- 批准号:
1925082 - 财政年份:2019
- 资助金额:
$ 170万 - 项目类别:
Standard Grant
NRI: Robots that Learn to Communicate through Natural Human Dialog
NRI:通过自然人类对话学习交流的机器人
- 批准号:
1637736 - 财政年份:2016
- 资助金额:
$ 170万 - 项目类别:
Standard Grant
EAGER: Robots that Learn to Communicate with Humans Tthrough Natural Dialog
EAGER:通过自然对话学习与人类交流的机器人
- 批准号:
1548567 - 财政年份:2015
- 资助金额:
$ 170万 - 项目类别:
Standard Grant
RI: Small: Perceptually Grounded Learning of Instructional Language
RI:小:教学语言的感知基础学习
- 批准号:
1016312 - 财政年份:2010
- 资助金额:
$ 170万 - 项目类别:
Continuing Grant
RI: Learning Language Semantics from Perceptual Context
RI:从感知上下文中学习语言语义
- 批准号:
0712097 - 财政年份:2007
- 资助金额:
$ 170万 - 项目类别:
Continuing Grant
Text Data Mining Using Information Extraction
使用信息提取的文本数据挖掘
- 批准号:
0117308 - 财政年份:2001
- 资助金额:
$ 170万 - 项目类别:
Continuing Grant
Symbolic Learning for Natural Language Processing: Integrating Information Extraction and Querying
自然语言处理的符号学习:集成信息提取和查询
- 批准号:
9704943 - 财政年份:1997
- 资助金额:
$ 170万 - 项目类别:
Continuing Grant
Learning Search-Control Heuristics for Logic Programs: Applications to Speedup Learning and Language Acquisition
逻辑程序的学习搜索控制启发式:加速学习和语言习得的应用
- 批准号:
9310819 - 财政年份:1994
- 资助金额:
$ 170万 - 项目类别:
Continuing Grant
Refining Concepts And Domain Theories By Combining Explanation-Based And Empirical Learning
通过结合基于解释的学习和实证学习来完善概念和领域理论
- 批准号:
9102926 - 财政年份:1991
- 资助金额:
$ 170万 - 项目类别:
Continuing Grant
相似国自然基金
Dynamic Credit Rating with Feedback Effects
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
IntBIO: Collaborative Research: Feedback between physiological performance and social foraging in multi-species social network of wintering birds
IntBIO:合作研究:越冬鸟类多物种社交网络中生理表现和社交觅食之间的反馈
- 批准号:
2316374 - 财政年份:2023
- 资助金额:
$ 170万 - 项目类别:
Standard Grant
A Multi-Rate Feedback Control Framework for Design and Analyzing of Decentralized and Federated Learning
用于设计和分析去中心化联邦学习的多速率反馈控制框架
- 批准号:
2311007 - 财政年份:2023
- 资助金额:
$ 170万 - 项目类别:
Standard Grant
IntBIO: Collaborative Research: Feedback between physiological performance and social foraging in multi-species social network of wintering birds
IntBIO:合作研究:越冬鸟类多物种社交网络中生理表现和社交觅食之间的反馈
- 批准号:
2316373 - 财政年份:2023
- 资助金额:
$ 170万 - 项目类别:
Standard Grant
Multi-Modal Fingertip Sensors for Prosthetic Hand Control and Feedback
用于假手控制和反馈的多模式指尖传感器
- 批准号:
10384800 - 财政年份:2021
- 资助金额:
$ 170万 - 项目类别:
Multi-Axis Laser Interferometer for Position Measurements and Motion Feedback Control
用于位置测量和运动反馈控制的多轴激光干涉仪
- 批准号:
RTI-2021-00256 - 财政年份:2020
- 资助金额:
$ 170万 - 项目类别:
Research Tools and Instruments
Feedback Loops of Adipogenesis Targeted (FAT) a multi-omics approach to decipher PPARG regulators
脂肪生成靶向 (FAT) 的反馈循环是一种破译 PPARG 调节因子的多组学方法
- 批准号:
417119862 - 财政年份:2019
- 资助金额:
$ 170万 - 项目类别:
Research Grants
Cosmic Ray Feedback in a Multi-Phase Medium
多相介质中的宇宙射线反馈
- 批准号:
1911198 - 财政年份:2019
- 资助金额:
$ 170万 - 项目类别:
Standard Grant
Adaptive control systems for multi-point teleoperated human-in-the-loop applications with haptic feedback
具有触觉反馈的多点远程操作人在环应用的自适应控制系统
- 批准号:
501262-2016 - 财政年份:2018
- 资助金额:
$ 170万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Enabling Multi-site,Tailored Feedback Interventions to Reduce Low-Value Test Ordering in Critical Care: A Systematic Approach
启用多站点、定制的反馈干预措施以减少重症监护中的低价值测试订单:系统方法
- 批准号:
371425 - 财政年份:2017
- 资助金额:
$ 170万 - 项目类别:
Operating Grants
Adaptive control systems for multi-point teleoperated human-in-the-loop applications with haptic feedback
具有触觉反馈的多点远程操作人在环应用的自适应控制系统
- 批准号:
501262-2016 - 财政年份:2017
- 资助金额:
$ 170万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years