NRI: Robots that Learn to Communicate through Natural Human Dialog

NRI:通过自然人类对话学习交流的机器人

基本信息

  • 批准号:
    1637736
  • 负责人:
  • 金额:
    $ 93.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Robots are increasingly capable and are on the threshold of becoming a ubiquitous technology. For robots to be truly useful, people must be able to effectively communicate their needs in everyday human language. Although there is a growing body of research on natural-language processing for human-robot interaction, it typically requires some form of explicit supervision provided by an engineering expert and involves unnatural, laborious training to obtain robustness and coverage. This project involves the development of human-robot dialog systems that learn to communicate with users through natural dialog, learning from repeated normal user interactions to become more robust and capable. The project supports the education of students in the areas of natural-language processing, human-robot interaction, and machine learning, where there is significant demand for educated personnel. It is integrated with the university's Freshman Research Initiative, which gets undergraduate students involved in research in their first year.In order to develop human-robot dialog systems that learn to improve their communication skills through normal user interactions, the project integrates and adapts learning techniques from three currently disparate technical areas: semantic parsing, spoken dialog management, and perceptual language grounding. The project adapts and integrates techniques for semantic-parser learning using combinatory categorial grammar (CCG), dialog management using Partially Observable Markov Decision Processes (POMDPs), and multi-modal language grounding using both visual and haptic sensors, in order to develop a dialog system for communicating with robots that comprise the Building Wide Intelligence (BWI) system being developed at the University of Texas at Austin. The research integrates the PI's expertise in semantic parsing and language grounding with the co-PI's expertise in robotics and reinforcement learning, forming a unique interdisciplinary team for developing novel and effective systems for human-robot interaction. The project includes rigorous evaluations using controlled experiments on a range of tasks using both on-line simulations with crowdsourced users, and natural user interaction with a mobile robot platform consisting of a wheeled Segway base and a Kinova robot arm being developed for the BWI system.
机器人的能力越来越强,即将成为一项无处不在的技术。为了让机器人真正有用,人们必须能够用日常的人类语言有效地表达他们的需求。尽管关于人机交互的自然语言处理的研究越来越多,但它通常需要工程专家提供某种形式的明确监督,并涉及非自然的、费力的训练,以获得鲁棒性和覆盖范围。该项目涉及开发人机对话系统,学习通过自然对话与用户交流,从重复的正常用户交互中学习,变得更加强大和有能力。该项目支持学生在自然语言处理、人机交互和机器学习领域的教育,这些领域对受过教育的人员有很大的需求。它与该校的新生研究计划(Freshman Research Initiative)相结合,后者让本科生在第一年就参与研究。为了开发人机对话系统,通过正常的用户交互来学习提高他们的沟通技巧,该项目集成并适应了目前三个不同技术领域的学习技术:语义解析、口语对话管理和感知语言基础。该项目采用并集成了使用组合分类语法(CCG)的语义解析器学习技术,使用部分可观察马尔可夫决策过程(pomdp)的对话管理技术,以及使用视觉和触觉传感器的多模态语言基础技术,以开发一个对话系统,用于与组成建筑智能(BWI)系统的机器人进行通信,该系统由德克萨斯大学奥斯汀分校开发。该研究将PI在语义解析和语言基础方面的专业知识与co-PI在机器人和强化学习方面的专业知识相结合,形成了一个独特的跨学科团队,用于开发新颖有效的人机交互系统。该项目包括对一系列任务进行严格的评估,使用众包用户的在线模拟,以及用户与移动机器人平台的自然交互,该平台由轮式Segway基座和为BWI系统开发的Kinova机器人手臂组成。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dialog as a Vehicle for Lifelong Learning
  • DOI:
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aishwarya Padmakumar;R. Mooney
  • 通讯作者:
    Aishwarya Padmakumar;R. Mooney
Improving Grounded Natural Language Understanding through Human-Robot Dialog
  • DOI:
    10.1109/icra.2019.8794287
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jesse Thomason;Aishwarya Padmakumar;Jivko Sinapov;Nick Walker;Yuqian Jiang;Harel Yedidsion;Justin W. Hart;P. Stone;R. Mooney
  • 通讯作者:
    Jesse Thomason;Aishwarya Padmakumar;Jivko Sinapov;Nick Walker;Yuqian Jiang;Harel Yedidsion;Justin W. Hart;P. Stone;R. Mooney
Improving Black-box Speech Recognition using Semantic Parsing
  • DOI:
  • 发表时间:
    2017-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rodolfo Corona;Jesse Thomason;R. Mooney
  • 通讯作者:
    Rodolfo Corona;Jesse Thomason;R. Mooney
Optimal Use Of Verbal Instructions For Multi-Robot Human Navigation Guidance
多机器人人类导航指导中口头指令的优化使用
Jointly Improving Parsing and Perception for Natural Language Commands through Human-Robot Dialog
  • DOI:
    10.1613/jair.1.11485
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jesse Thomason;Aishwarya Padmakumar;Jivko Sinapov;Nick Walker;Yuqian Jiang;Harel Yedidsion;Justin W. Hart;P. Stone;R. Mooney
  • 通讯作者:
    Jesse Thomason;Aishwarya Padmakumar;Jivko Sinapov;Nick Walker;Yuqian Jiang;Harel Yedidsion;Justin W. Hart;P. Stone;R. Mooney
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raymond Mooney其他文献

Dialogue with Robots: Proposals for Broadening Participation and Research in the SLIVAR Community
与机器人对话:扩大 SLIVAR 社区参与和研究的提案
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Casey Kennington;Malihe Alikhani;Heather Pon;Katherine Atwell;Yonatan Bisk;Daniel Fried;Felix Gervits;Zhao Han;Mert Inan;Michael Johnston;Raj Korpan;Diane Litman;M. Marge;Cynthia Matuszek;Ross Mead;Shiwali Mohan;Raymond Mooney;Natalie Parde;Jivko Sinapov;Angela Stewart;Matthew Stone;Stefanie Tellex;Tom Williams
  • 通讯作者:
    Tom Williams
Sparse Meets Dense: A Hybrid Approach to Enhance Scientific Document Retrieval
稀疏与密集:增强科学文档检索的混合方法
  • DOI:
    10.48550/arxiv.2401.04055
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Priyanka Mandikal;Raymond Mooney
  • 通讯作者:
    Raymond Mooney

Raymond Mooney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raymond Mooney', 18)}}的其他基金

NRI: FND: Improving Robot Learning from Feedback and Demonstration using Natural Language
NRI:FND:使用自然语言通过反馈和演示改进机器人学习
  • 批准号:
    1925082
  • 财政年份:
    2019
  • 资助金额:
    $ 93.69万
  • 项目类别:
    Standard Grant
EAGER: Robots that Learn to Communicate with Humans Tthrough Natural Dialog
EAGER:通过自然对话学习与人类交流的机器人
  • 批准号:
    1548567
  • 财政年份:
    2015
  • 资助金额:
    $ 93.69万
  • 项目类别:
    Standard Grant
RI: Small: Perceptually Grounded Learning of Instructional Language
RI:小:教学语言的感知基础学习
  • 批准号:
    1016312
  • 财政年份:
    2010
  • 资助金额:
    $ 93.69万
  • 项目类别:
    Continuing Grant
RI: Learning Language Semantics from Perceptual Context
RI:从感知上下文中学习语言语义
  • 批准号:
    0712097
  • 财政年份:
    2007
  • 资助金额:
    $ 93.69万
  • 项目类别:
    Continuing Grant
ITR: Feedback from Multi-Source Data Mining to Experimentation for Gene Network Discovery
ITR:从多源数据挖掘到基因网络发现实验的反馈
  • 批准号:
    0325116
  • 财政年份:
    2003
  • 资助金额:
    $ 93.69万
  • 项目类别:
    Continuing Grant
Text Data Mining Using Information Extraction
使用信息提取的文本数据挖掘
  • 批准号:
    0117308
  • 财政年份:
    2001
  • 资助金额:
    $ 93.69万
  • 项目类别:
    Continuing Grant
Symbolic Learning for Natural Language Processing: Integrating Information Extraction and Querying
自然语言处理的符号学习:集成信息提取和查询
  • 批准号:
    9704943
  • 财政年份:
    1997
  • 资助金额:
    $ 93.69万
  • 项目类别:
    Continuing Grant
Learning Search-Control Heuristics for Logic Programs: Applications to Speedup Learning and Language Acquisition
逻辑程序的学习搜索控制启发式:加速学习和语言习得的应用
  • 批准号:
    9310819
  • 财政年份:
    1994
  • 资助金额:
    $ 93.69万
  • 项目类别:
    Continuing Grant
Refining Concepts And Domain Theories By Combining Explanation-Based And Empirical Learning
通过结合基于解释的学习和实证学习来完善概念和领域理论
  • 批准号:
    9102926
  • 财政年份:
    1991
  • 资助金额:
    $ 93.69万
  • 项目类别:
    Continuing Grant

相似海外基金

How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
  • 批准号:
    2594635
  • 财政年份:
    2025
  • 资助金额:
    $ 93.69万
  • 项目类别:
    Studentship
Home helper robots: Understanding our future lives with human-like AI
家庭帮手机器人:用类人人工智能了解我们的未来生活
  • 批准号:
    FT230100021
  • 财政年份:
    2025
  • 资助金额:
    $ 93.69万
  • 项目类别:
    ARC Future Fellowships
CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
  • 批准号:
    2422698
  • 财政年份:
    2024
  • 资助金额:
    $ 93.69万
  • 项目类别:
    Continuing Grant
Supporting Elementary Students’ Computer Science Skills and Interest through Engagement with Low-cost, Adaptable Robots
通过与低成本、适应性强的机器人互动来支持小学生的计算机科学技能和兴趣
  • 批准号:
    2342489
  • 财政年份:
    2024
  • 资助金额:
    $ 93.69万
  • 项目类别:
    Standard Grant
PFI-TT: Vine Robots for In-Pipe Navigation and Inspection of Critical Infrastructure
PFI-TT:用于管道内导航和关键基础设施检查的 Vine 机器人
  • 批准号:
    2345769
  • 财政年份:
    2024
  • 资助金额:
    $ 93.69万
  • 项目类别:
    Standard Grant
Usability and Ergonomics of wearable robots
可穿戴机器人的可用性和人体工程学
  • 批准号:
    10087481
  • 财政年份:
    2024
  • 资助金额:
    $ 93.69万
  • 项目类别:
    Collaborative R&D
CAREER: Acoustic Vortex Robots for Contactless 6-Degrees-of-Freedom Object Manipulation
职业:用于非接触式 6 自由度物体操纵的声学涡旋机器人
  • 批准号:
    2340016
  • 财政年份:
    2024
  • 资助金额:
    $ 93.69万
  • 项目类别:
    Standard Grant
STTR Phase I: Weed Control Via Terradynamically Robust Robots
STTR 第一阶段:通过地形动力学鲁棒机器人控制杂草
  • 批准号:
    2335553
  • 财政年份:
    2024
  • 资助金额:
    $ 93.69万
  • 项目类别:
    Standard Grant
AerialHitches: Forming and Controlling Hitches for Fully Autonomous Transportation Using Aerial Robots with Cables
空中挂钩:使用带有电缆的空中机器人形成和控制全自动运输的挂钩
  • 批准号:
    2322840
  • 财政年份:
    2024
  • 资助金额:
    $ 93.69万
  • 项目类别:
    Standard Grant
CAREER: Safe Autonomy for Soft Robots
职业:软机器人的安全自主
  • 批准号:
    2340111
  • 财政年份:
    2024
  • 资助金额:
    $ 93.69万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了