EAGER: A Mathematical Framework for Increasing Trust in Human-Machine Interactions
EAGER:增强人机交互信任的数学框架
基本信息
- 批准号:1548616
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1548616(Jain)For decades automation has played a critical role in air and space flight as well as in industrial settings such as manufacturing and processing plants. Today, humans interact with automated systems every day including in their home (e.g. robotic vacuums and home monitoring systems) and in their vehicles (e.g. navigation systems). The role of automation is meant to improve the human condition and improve our quality of life. However the benefits of automation are sometimes lost when humans override an automated decision due to a fundamental lack of trust in the machine. Research has shown that close to 80% of the major accidents that have affected lives and the environment are linked to errors, some of which may have originated from trust issues in automation. Therefore, it is necessary for us to study human-machine interactions so that the automated systems of tomorrow are not only safer but more effective in promoting the health and prosperity of humans. The goal of this research project is to enable emotional intelligence in machines. That is to say, we believe that if a machine has the ability to sense and process the feelings, particularly, trust, of the human interacting with it, the human and machine can better cooperate to achieve a common goal or complete a given task. In order to realize this vision, it is necessary for machines to be able to 1) measure a human's emotional state and 2) respond accordingly to the human through changes in its user interface (UI). We will study the use of different psychophysiological tools to make these measurements as well as utilize mathematical tools to develop models that capture how humans respond emotionally to visual changes in machine UIs. The results of this study will then enable us to redesign machine UIs that exhibit emotional intelligence. This research project is a collaboration between two faculty, one with an expertise in control and automation and another with an expertise in design and psychology. By bridging the gap between these disciplines, the PIs will be able to facilitate a dialogue and future research engagement between researchers in the fields of dynamical systems and controls, design, and the social sciences. This is critical because the study of human-machine interactions inherently requires tools and methods from both traditional engineering disciplines as well as the social sciences. It is also important for young engineers to understand the value and benefits of interdisciplinary research and to understand their own discipline in the context of other fields. To that end, the PIs will present the results of this project to engineering undergraduates to expose them to cutting edge research that is rooted in improving the human condition through collaboration across seemingly disparate fields of study. This also aligns with national goals of increasing participation in STEM fields by appealing to a wider demographic of students, including women and minorities. With increasing automation in all aspects of society, humans are increasingly being displaced as the primary decision-maker in various roles (such as aircraft pilots and plant operators). However, humans still have the ability to override automated decisions, and a significant problem arises when the human overrides an automated decision due to a fundamental lack of trust in the machine. In what are broadly being called Human-Agent Collectives, we expect to see a growing need for cooperation and trust between humans and machines to accomplish a large range of tasks. Therefore, the way in which the machine senses and responds to the human is of particular importance. The objective of the proposed research is to understand the dynamic relationship between machine user interfaces (UIs) and human trust in automated systems. The new knowledge gained through this research will enable us to improve human-machine interactions by ultimately redesigning the user interface. This modified user interface will include an emotional intelligence system for the machine to respond to the human in real-time. Two specific aims guide this research. The first aim is to conduct a dynamical characterization of real-time measurements of trust. Such measurements do not currently exist and are necessary in order to allow machines to sense the trust level of the humans that they are interacting with. We propose to identify a dynamic model of trust that relies on real-time psychophysiological measurements such as galvanic skin response (GSR) and electroencephalography (EEG), as well as eye-tracking. The second aim is to define a mathematical framework for modeling human emotional response to machines. Machines communicate with humans through various design features in their user interface (UI). We propose to conduct a human subjects study to mathematically characterize how specific machine UI features can be used by a machine to dynamically change human trust in the machine. Due to the use of psychophysiological sensors, these models will be more widely applicable as compared to previously developed trust models that were specific to the context of the human subject studies from which the data was collected. This cross-disciplinary project will advance knowledge and understanding within the dynamics and control, design, and social science communities. Through the proposed research, we will enable the design of a closed-loop emotional intelligence system that achieves the overarching goal of improving the relationship between human and machine, thereby leading to more reliable and efficient operation of a range of automated systems. Additionally, the PIs will co-organize events centered on human-machine interaction at both dynamics/control and mechanical design conferences to encourage a dialogue and research collaborations across these otherwise disparate fields. Finally, in educational outreach, the PIs will disseminate this research to mechanical engineering undergraduates to expose them to the excitement and benefits of interdisciplinary research; this directly supports the ASME's vision for the mechanical engineer of 2030 by broadening the brand of mechanical engineering to appeal to a wider demographic of students, including women and minorities.
1548616(Jain)几十年来,自动化在航空航天以及制造和加工厂等工业环境中发挥了关键作用。 如今,人类每天都与自动化系统互动,包括在家中(例如机器人吸尘器和家庭监控系统)和车辆中(例如导航系统)。自动化的作用旨在改善人类状况并提高我们的生活质量。 然而,当人类由于对机器根本缺乏信任而推翻自动决策时,自动化的好处有时就会消失。研究表明,影响生命和环境的重大事故中,近 80% 都与错误有关,其中一些可能源于自动化中的信任问题。因此,我们有必要研究人机交互,使未来的自动化系统不仅更安全,而且更有效地促进人类的健康和繁荣。该研究项目的目标是实现机器的情商。 也就是说,我们相信,如果机器有能力感知和处理人类与其交互的感受,特别是信任,那么人与机器就可以更好地合作,以实现共同的目标或完成给定的任务。 为了实现这一愿景,机器必须能够 1) 测量人类的情绪状态,2) 通过用户界面 (UI) 的变化对人类做出相应的响应。我们将研究如何使用不同的心理生理学工具来进行这些测量,并利用数学工具来开发模型来捕获人类如何对机器 UI 中的视觉变化做出情感反应。这项研究的结果将使我们能够重新设计表现出情商的机器用户界面。该研究项目是两名教师之间的合作,其中一名拥有控制和自动化方面的专业知识,另一名拥有设计和心理学方面的专业知识。 通过弥合这些学科之间的差距,PI 将能够促进动力系统和控制、设计和社会科学领域的研究人员之间的对话和未来的研究参与。这一点至关重要,因为人机交互的研究本质上需要传统工程学科和社会科学的工具和方法。对于年轻工程师来说,了解跨学科研究的价值和好处,并在其他领域的背景下了解自己的学科也很重要。为此,PI 将向工程本科生展示该项目的成果,让他们接触到尖端研究,这些研究植根于通过看似不同的研究领域的合作来改善人类状况。这也符合通过吸引更广泛的学生(包括女性和少数族裔)来增加 STEM 领域参与的国家目标。随着社会各方面自动化程度的提高,人类作为各种角色(例如飞机飞行员和工厂操作员)的主要决策者的地位日益被取代。然而,人类仍然有能力推翻自动决策,当人类由于对机器缺乏信任而推翻自动决策时,就会出现一个重大问题。在所谓的“人类代理集体”中,我们期望看到人类和机器之间对合作和信任的需求不断增长,以完成大量任务。因此,机器对人类的感知和响应方式就显得尤为重要。本研究的目的是了解自动化系统中机器用户界面(UI)与人类信任之间的动态关系。通过这项研究获得的新知识将使我们能够通过最终重新设计用户界面来改善人机交互。这种修改后的用户界面将包括一个情感智能系统,使机器能够实时响应人类。这项研究有两个具体目标指导。第一个目标是对信任的实时测量进行动态表征。目前尚不存在此类测量,但为了让机器感知与其交互的人类的信任级别,此类测量是必要的。我们建议确定一种动态的信任模型,该模型依赖于实时心理生理测量,例如皮肤电反应(GSR)和脑电图(EEG)以及眼球追踪。第二个目标是定义一个数学框架来模拟人类对机器的情绪反应。机器通过用户界面 (UI) 中的各种设计功能与人类进行交流。我们建议进行一项人类受试者研究,以数学方式描述机器如何使用特定的机器 UI 功能来动态改变人类对机器的信任。由于使用了心理生理学传感器,与之前开发的特定于收集数据的人类受试者研究背景的信任模型相比,这些模型将具有更广泛的适用性。这个跨学科项目将促进动力学和控制、设计和社会科学界的知识和理解。通过拟议的研究,我们将实现闭环情感智能系统的设计,以实现改善人与机器之间的关系的总体目标,从而使一系列自动化系统更可靠、更高效地运行。此外,PI 将在动力学/控制和机械设计会议上共同组织以人机交互为中心的活动,以鼓励这些不同领域之间的对话和研究合作。最后,在教育推广方面,PI 将向机械工程本科生传播这项研究,让他们接触到跨学科研究的兴奋和好处;这通过扩大机械工程品牌来吸引更广泛的学生(包括女性和少数族裔),直接支持 ASME 对 2030 年机械工程师的愿景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neera Jain其他文献
A Computational Model of Coupled Human Trust and Self-confidence Dynamics
人类信任与自信动态耦合的计算模型
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Katherine J. Williams;Madeleine S. Yuh;Neera Jain - 通讯作者:
Neera Jain
zonoLAB: A MATLAB toolbox for set-based control systems analysis using hybrid zonotopes
zonoLAB:使用混合 zonotopes 进行基于集合的控制系统分析的 MATLAB 工具箱
- DOI:
10.48550/arxiv.2310.15426 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Justin P. Koeln;Trevor J. Bird;Jacob A. Siefert;Justin Ruths;H. Pangborn;Neera Jain - 通讯作者:
Neera Jain
Development and evaluation of a generalized rule-based control strategy for residential ice storage systems
- DOI:
10.1016/j.enbuild.2019.05.040 - 发表时间:
2019-08-15 - 期刊:
- 影响因子:
- 作者:
Aaron Tam;Davide Ziviani;James E. Braun;Neera Jain - 通讯作者:
Neera Jain
On Modeling Human Trust in Automation: Identifying distinct dynamics through clustering of Markovian models
关于自动化中的人类信任建模:通过马尔可夫模型聚类识别不同的动态
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Griffon McMahon;K. Akash;Tahira Reid;Neera Jain - 通讯作者:
Neera Jain
Inferring Takeover in SAE Level 2 Automated Vehicles Using Driver-Based Behavioral and Psychophysiological Signals
使用基于驾驶员的行为和心理生理信号来推断 SAE 2 级自动车辆的接管
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Matthew Konishi;Jacob G. Hunter;Z. Zheng;Teruhisa Misu;K. Akash;Tahira Reid;Neera Jain - 通讯作者:
Neera Jain
Neera Jain的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neera Jain', 18)}}的其他基金
CAREER: Enabling Human-Aware and Responsive Automation through Cognitive State Modeling and Estimation
职业:通过认知状态建模和估计实现人类感知和响应式自动化
- 批准号:
2145827 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Mathematical framework for novel non-porous viscous fingering instabilities
新型无孔粘性指法不稳定性的数学框架
- 批准号:
EP/Y021959/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
A new mathematical and philosophical framework of causation
因果关系的新数学和哲学框架
- 批准号:
23H00599 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Building the framework of controlling a pandemic based on mathematical epidemiology and evolutionary game theory
基于数学流行病学和进化博弈论构建疫情控制框架
- 批准号:
22KF0303 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Data-Driven Scheduling of Orthopaedic Surgical Services: An End-to-End Framework with Machine Learning and Mathematical Optimization
数据驱动的骨科手术服务调度:具有机器学习和数学优化的端到端框架
- 批准号:
490488 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Operating Grants
Collaborative Research: Dynamical Sampling on Graphs: Mathematical Framework and Algorithms
协作研究:图动态采样:数学框架和算法
- 批准号:
2208031 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Dynamical Sampling on Graphs: Mathematical Framework and Algorithms
协作研究:图动态采样:数学框架和算法
- 批准号:
2208030 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
MRC Transition Support: A mathematical modelling framework for tuberculosis burden estimation and economic evaluation of pharmaceutical interventions.
MRC 过渡支持:用于结核病负担估计和药物干预经济评估的数学模型框架。
- 批准号:
MR/W029227/1 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Fellowship
Towards an immuno-epidemiological framework: The trade-off between biological detail and mathematical complexity
迈向免疫流行病学框架:生物学细节和数学复杂性之间的权衡
- 批准号:
RGPIN-2018-05862 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
A Framework for Model Development and Mathematical Evaluation of Vaccination
疫苗接种模型开发和数学评估框架
- 批准号:
RGPIN-2018-05906 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Objectives matter: A mathematical modelling framework to identify optimal control strategies for future infectious disease outbreaks
目标很重要:数学模型框架可确定未来传染病爆发的最佳控制策略
- 批准号:
2737654 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Studentship