SBIR Phase I: Big Data Analytics for Facility Operations and Management
SBIR 第一阶段:设施运营和管理的大数据分析
基本信息
- 批准号:1549078
- 负责人:
- 金额:$ 14.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-01 至 2016-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is to help owners and operators of commercial and institutional buildings to improve resource allocation by analyzing data from built infrastructure to enable smarter decision-making supported by detailed, measureable, real-time knowledge. By automatically integrating building information that is stored using various software applications and formats, this innovation enables owners and facilities managers to efficiently search for information and respond to emergency and failures, and proactively plan for operation and maintenance tasks. This innovation also applies artificial intelligence to automatically conduct big data analysis and identify opportunities to improve energy efficiency and operating performance of assets and indoor environment. Organizations can not only save operating budget by reducing equipment failures and energy waste, but also improve the quality of life and productivity for occupants. This Small Business Innovation Research (SBIR) Phase I project is aimed at developing middleware technology to automatically integrate and analyze both structured and unstructured data from facilities design and operations. Facilities maintenance and operating is the longest phase in the life-cycle of buildings, accounting for more than 60% of the total cost of ownership. Owners and facilities managers are faced with the challenges of efficiently managing aging and crowded building infrastructure to extend the life of assets and control costs. However, fragmented and under-analyzed building information results in most maintenance work being conducted reactively to address problems that have already caused significant loss or waste. The vision of this innovation is to develop a fully commercialized software package to enable facilities managers to be more proactive in improving building occupant comfort, aligning limited resources where they have the most significant impact, and reducing wasted energy through optimized mechanical controls. This project aims to demonstrate the conceptual feasibility of using big data analytics and machine learning to revolutionize facilities operating and maintenance decisions. The results from this applied research will include algorithms and methods to combine structured data with field collected unstructured data into qualitative and quantitative output appropriate for improved decision making.
这个小型企业创新研究(SBIR)第一阶段项目的更广泛的影响/商业潜力是通过分析来自已建基础设施的数据来帮助商业和机构建筑的业主和运营商改善资源分配,以实现由详细,可测量,实时知识支持的更明智的决策。通过自动集成使用各种软件应用程序和格式存储的建筑信息,这一创新使业主和设施管理人员能够有效地搜索信息并对紧急情况和故障做出响应,并主动规划运营和维护任务。这项创新还应用人工智能自动进行大数据分析,并确定提高资产和室内环境的能源效率和运营性能的机会。组织不仅可以通过减少设备故障和能源浪费来节省运营预算,还可以提高居住者的生活质量和生产力。该小型企业创新研究(SBIR)第一阶段项目旨在开发中间件技术,以自动集成和分析设施设计和运营中的结构化和非结构化数据。设施维护和运营是建筑物生命周期中最长的阶段,占总拥有成本的60%以上。业主和设施管理人员面临着有效管理老化和拥挤的建筑基础设施以延长资产寿命和控制成本的挑战。然而,碎片化和分析不足的建筑信息导致大多数维护工作被动地进行,以解决已经造成重大损失或浪费的问题。这项创新的愿景是开发一个完全商业化的软件包,使设施管理人员能够更积极地改善建筑物居住者的舒适度,将有限的资源集中在最具影响力的地方,并通过优化机械控制减少能源浪费。该项目旨在展示使用大数据分析和机器学习来彻底改变设施运营和维护决策的概念可行性。这项应用研究的结果将包括将联合收割机结构化数据与现场收集的非结构化数据结合成适合于改进决策的定性和定量输出的算法和方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuesong Liu其他文献
The efficacy of convalescent plasma for the treatment of severe influenza
恢复期血浆治疗重症流感的疗效
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Zhiheng Xu;Jianmeng Zhou;Yongbo Huang;Xuesong Liu;Yong;Si;Dong;Zhimin Lin;Xiaoqing Liu;Yimin Li - 通讯作者:
Yimin Li
In situ regeneration of sulfated Cu/SAPO-34 catalyst forthe selective catalytic reduction of NOx with NH3
硫酸化 Cu/SAPO-34 催化剂的原位再生用于 NH3 选择性催化还原 NOx
- DOI:
10.1007/s11144-019-01662-1 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Qifan Yu;Xuesong Liu;Hongfeng Chen;Shuang Liu;Peng Jiang - 通讯作者:
Peng Jiang
Dysregulation of cholesterol metabolism in cancer progression
- DOI:
10.1038/s41388-023-02836-x - 发表时间:
2023 - 期刊:
- 影响因子:
- 作者:
Xuesong Liu;Mengzhu Lv;Weimin Zhang;Qimin Zhan - 通讯作者:
Qimin Zhan
A long non-coding RNA associated with H3K27me3 methylation negatively regulates OsZIP16 transcription under cadmium stress
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:
- 作者:
He Li;Xuesong Liu;Di Sun;Zhimin Yang - 通讯作者:
Zhimin Yang
Measurement of the $Upsilon$ polarization in $pp$ collisions at $sqrt{s}$=7 and 8TeV
测量 $sqrt{s}$=7 和 8TeV 下 $pp$ 碰撞中的 $Upsilon$ 偏振
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
R. Aaij;G. Ciezarek;P. Collins;S. Roiser;W. Qian;A. Vollhardt;B. Storaci;D. M. Tostes;D. O’Hanlon;M. Merk;C. Jones;D. Galli;M. Minard;D. Berninghoff;P. Garsed;P. Krokovny;M. Corvo;I. Polyakov;A. Camboni;Peilian Li;F. Lemaitre;B. Sciascia;J. Wishahi;E. Sadykhov;V. Chobanova;T. Kirn;M. R. Salzgeber;M. Palutan;N. Tuning;A. Dendek;A. Mogini;S. Bachmann;D. Gascón;T. Evans;M. Kelsey;H. Luo;N. Harnew;O. Morgunova;T. Klimkovich;M. Chrzaszcz;O. Maev;G. Haefeli;S. Stone;G. Fernandez;H. Evans;S. Barsuk;F. Maciuc;A. Piucci;E. Tournefier;D. Pinci;M. Baalouch;A. Canto;A. Rollings;G. Graziani;O. Girard;C. Baesso;R. Waldi;N. Nikitin;O. Grünberg;D. Vieira;S. Stahl;S. Neubert;E. Smith;M. Schellenberg;J. P. Grabowski;M. Needham;I. Bordyuzhin;E. Sepúlveda;B. Schmidt;K. Gizdov;C. Hasse;C. Pappenheimer;I. Belyaev;A. Petrov;I. Smith;M. Altarelli;O. Stenyakin;C. Dean;M. Szczekowski;L. Eklund;L. Martin;D. Marangotto;A. Gomes;M. Kenzie;H. Stevens;P. Pérez;A. Borgheresi;M. Hecker;A. Carbone;O. Deschamps;D. Chamont;B. Viaud;M. Beuzekom;A. Merli;M. Fiorini;P. Spradlin;L. An;V. Müller;K. Belous;A. Pearce;R. Oldeman;M. Dziewiecki;F. Blanc;S. Karodia;Shanzhen Chen;M. Whitehead;Juan Silva;P. H. Hopchev;M. Sokoloff;J. Rodriguez;F. Lionetto;M. Petruzzo;L. G. H. D. Oliveira;N. Serra;V. Molina;M. Vernet;J. Velthuis;G. Tellarini;V. Gligorov;T. Verlage;P. Charpentier;R. Aoude;E. Gabriel;A. Ossowska;F. Stagni;A. Hicheur;B. Maddock;M. Kecke;E. Herwijnen;L. Anderlini;Zhuoming Li;R. Forty;Yuehong Xie;L. Sestini;L. Dufour;X. Vilasís;L. S. Lavra;D. Ward;A. Valassi;M. Idzik;S. Nieswand;M. Reboud;A. F. Prieto;B. R. G. Cazon;Yuanning Gao;L. Federici;P. Billoir;C. Nguyen;J. Romeu;S. Tolk;J. Müller;B. Hamilton;T. Gys;Suvayu Ali;A. A. Alves;M. Martinelli;E. Grauges;S. Richards;P. Mackowiak;M. Tilley;K. Petridis;M. Borsato;B. Voneki;E. Gersabeck;F. Muheim;F. Marinho;N. Kazeev;S. Stemmle;E. Santovetti;M. Vesterinen;U. Marconi;T. Skwarnicki;M. Veghel;S. Blusk;M. Shapkin;R. Lindner;Sergey Filippov;S. Eisenhardt;H. Schreiner;S. Schael;T. Ruf;S. Monteil;C. Burr;M. Rangel;B. Rachwał;A. Berezhnoy;B. Dey;J. Cogan;E. Jans;F. Bedeschi;M. P. Casasus;Tenglin Li;M. Ebert;A. Davis;V. Shevchenko;A. Sarti;I. Longstaff;A. Palano;C. Benito;M. Andreotti;A. Bay;H. Yin;D. Gerick;F. Ratnikov;D. Mitzel;A. Weiden;M. E. Stramaglia;E. Govorkova;M. Santimaria;F. Meier;A. Rodrigues;J. Blouw;A. Heister;K. Akiba;E. Khairullin;V. Pugatch;M. Dorigo;M. Veltri;S. Ely;R. Wallace;A. Pellegrino;R. Kopecná;J. Kariuki;Liming Zhang;M. Rotondo;A. Mathad;B. Pietrzyk;M. Artuso;A. Lupato;C. Gaspar;A. Tsaregorodtsev;C. Göbel;Z. Ajaltouni;S. Sridharan;L. Beaucourt;A. Jawahery;F. Dordei;A. Malinin;A. G. Torreira;D. Craik;D. M. Santos;M. Wilkinson;D. C. Pérez;G. Gazzoni;Yanxi Zhang;L. Bel;C. Joram;A. Satta;A. Kosmyntseva;U. Uwer;D. Loh;L. Gruber;M. Calvi;G. Lafferty;L. Carson;J. Goicochea;A. Sciubba;Mike Williams;J. Brodzicka;A. Vorobyev;G. Alkhazov;B. Meadows;I. Shapoval;S. Cadeddu;H. Dijkstra;C. Wallace;N. Neufeld;O. Francisco;D. Müller;M. Hushchyn;J. Lopes;K. Wyllie;A. Robert;H. Schindler;P. Cartelle;T. Humair;A. Morris;Zhirui Xu;A. Badalov;N. Sagidova;V. Vagnoni;M. Lener;J. Buytaert;P. Simone;S. Vecchi;F. Baryshnikov;S. Bifani;A. Papanestis;D. Lucchesi;S. Coquereau;M. Patel;A. Bursche;J. Lefrancois;M. Marinangeli;K. Klimaszewski;J. Zonneveld;R. Calabrese;V. Cogoni;X. C. Vidal;T. Likhomanenko;R. Lefèvre;D. Savrina;A. Bertolin;F. Betti;F. Kruse;E. Aslanides;Á. Suárez;P. Clarke;V. Battista;G. Chatzikonstantinidis;D. Golubkov;P. Soler;L. Shekhtman;C. S. Rios;F. Dettori;E. Furfaro;P. F. Declara;S. Benson;S. Esen;K. Heinicke;Zishuo Yang;P. Griffith;A. Grecu;S. Kotriakhova;S. Klaver;M. Borysova;P. Perret;S. Gallorini;P. Ilten;M. C. Gomez;A. Oblakowska;N. Neri;D. Maisuzenko;G. Passaleva;S. Zucchelli;S. Gambetta;L. Cardoso;R. Gac;S. Haines;Zhenwei Yang;A. Zhelezov;T. Hancock;D. Tonelli;E. Bowen;W. Byczynski;M. Fontana;W. Bonivento;F. Wilson;P. Gandini;G. Martellotti;E. Ben;Yiming Li;A. Sergi;S. Stefkova;N. Beliy;A. Golutvin;S. Ponce;Federico Alessio;D. Brundu;T. Blake;C. Khurewathanakul;T. Latham;B. Saitta;Z. Huard;R. Niet;A. Comerma;C. Satriano;S. Wotton;C. Voß;W. Funk;D. Ferguson;M. Kucharczyk;H. Cliff;A. Massafferri;C. Haen;M. Morandin;K. Hennessy;P. Owen;L. Gavardi;R. Currie;G. Cavallero;R. Appleby;M. Demmer;M. Kozeiha;V. Volkov;G. Mancinelli;J. Prisciandaro;C. Prouve;D. Milanes;G. Bencivenni;S. Stracka;M. Sirendi;T. Mombächer;V. F. Lima;J. Fu;M. Boubdir;L. Henry;N. Meinert;E. Michielin;P. Durante;A. Reis;L. Pescatore;M. Hatch;T. Ketel;P. Valls;M. Neuner;T. Nikodem;R. Santacesaria;D. Websdale;V. Kudryavtsev;M. Martin;E. Cogneras;B. Maurin;P. Naik;M. Serio;M. Schubiger;K. Zarebski;P. Stefko;M. Mulder;G. Sarpis;V. Vorobyev;Liang Sun;M. C. Torres;A. Bizzeti;P. Koppenburg;T. Boettcher;G. Wilkinson;A. Lai;S. Maddrell;S. Amerio;V. Balagura;V. Placinta;M. Schune;G. Simi;A. Artamonov;A. Mauri;R. Quagliani;R. Calladine;H. Viemann;J. Serrano;V. Bocci;G. Onderwater;H. Dembinski;O. Yushchenko;M. Cian;M. Tresch;G. Veneziano;M. Ferro;G. Wormser;T. Britton;S. T’Jampens;Z. Máthé;S. Borghi;J. G. Pardiñas;Jiesheng Yu;M. Zavertyaev;R. V. Gomez;S. Baker;P. Regueiro;A. McNab;C. Fitzpatrick;I. Raniuk;J. Moroń;A. Kuonen;V. Egorychev;T. Kvaratskheliya;K. Wraight;R. Cenci;W. Wiślicki;A. Cardini;M. Heß;A. Dzyuba;B. Quintana;J. Closier;A. Popov;L. Tomassetti;T. Bowcock;S. Akar;I. Bediaga;E. Maurice;G. Penso;V. Tisserand;C. Lazzeroni;M. Pikies;W. Barter;S. Farry;A. Trisovic;B. S. Sedes;M. Borisyak;M. Kreps;S. Beranek;S. Malde;Xiaoxue Han;Y. Amhis;V. Batozskaya;T. Gershon;Jiayin Sun;L. Pappalardo;T. Nakada;A. Leflat;F. Archilli;L. Massacrier;R. Barlow;F. Teubert;S. Poslavskii;F. Machefert;B. S. D. Paula;L. Minzoni;P. d’Argent;M. V. Diaz;C. Barschel;P. Campana;L. Cojocariu;S. Reichert;A. Petrolini;X. Lyu;B. Adeva;E. Cid;Andrey Ustyuzhanin;A. Nogay;T. Tekampe;C. Bozzi;T. Hadavizadeh;A. Loi;K. Fohl;M. Adinolfi;A. Mazurov;V. Renaudin;E. Price;N. Skidmore;I. Nasteva;P. Jalocha;R. Mountain;C. Vacca;F. Redi;I. Bezshyiko;E. Polycarpo;L. Cassina;T. D. Nguyen;M. Stepanova;A. Birnkraut;E. Luppi;A. Lusiani;Miriam Lucio Martínez;Yangheng Zheng;J. Dalseno;A. Semennikov;E. Buchanan;M. Pappagallo;M. Morello;J. Marks;J. Vidal;M. Karacson;T. Schmelzer;C. Matteuzzi;P. Henrard;M. Bettler;A. Navarro;Y. Guz;W. Hulsbergen;P. Ciambrone;Maria Aranzazu Oyanguren;R. Jacobsson;S. Easo;M. Gandelman;H. Cai;T. Shears;Mark E. Smith;S. Ricciardi;U. Egede;D. Decamp;G. Cowan;P. Seyfert;S. Braun;M. Alexander;S. Cheung;M. Charles;M. Williams;A. Pistone;Daniel Johnson;B. Khanji;V. Guimaraes;F. Rodrigues;A. Nandi;E. Rodrigues;Y. Shcheglov;A. Poluektov;I. Monroy;E. Bertholet;M. Chefdeville;L. Buono;F. Jiang;L. Garrido;E. Dall’Occo;S. Chitic;G. Punzi;A. Baranov;A. Pastore;P. Robbe;G. Corti;J. Albrecht;D. Derkach;M. John;M. Schiller;D. Fazzini;O. Lupton;H. Pullen;G. Manca;D. Forshaw;J. Ronayne;J. Barbosa;P. Marino;V. Macko;A. Ukleja;G. Dujany;P. Tsopelas;V. Lisovskyi;K. Rinnert;C. Alepuz;C. D’Ambrosio;B. Leverington;M. McCann;K. Swientek;K. Müller;M. R. Pernas;T. Maltsev;S. Gianì;E. Gushchin;T. Lesiak;I. Komarov;S. Amato;P. Nezza;D. Melnychuk;K. Schubert;R. Cardinale;M. Winn;J. Walsh;D. Saunders;S. Harnew;L. Paula;A. Chubykin;A. Crocombe;C. M. Sobral;V. Bellee;C. Sierra;K. Kurek;C. Frei;N. Jurik;N. Farley;C. Potterat;M. Tobin;A. Bondar;M. Gersabeck;W. Sutcliffe;C. Hadjivasiliou;M. Frank;N. Bondar;W. Kucewicz;J. Lopez;Jianchun Wang;R. Schwemmer;W. Baldini;A. Beiter;S. Eidelman;R. Greim;M. Straticiuc;A. Contu;K. Dreimanis;L. Douglas;A. Rogozhnikov;V. Syropoulos;G. Andreassi;G. Casse;T. Colombo;Xuesong Liu;A. R. Vidal;M. Schlupp;A. Vagner;C. Färber;D. Popov;A. Venkateswaran;S. Capua;A. Tully;X. Yuan;L. Capriotti;T. Williams;F. Ferrari;M. Rudolph;S. Simone;A. Dziurda;M. Firlej;Jibo He;R. McNulty;C. Langenbruch;D. Gonzalo;I. Babuschkin;G. Pomery;C. Gotti;O. Steinkamp;G. Lanfranchi;M. Clemencic;U. Eitschberger;F. Fontanelli;G. Carboni;S. Playfer;P. Ibis;B. Jost;Xianglei Zhu;J. Maratas;G. Raven;R. Ekelhof;S. Ogilvy;Yuezhe Yao;V. Zhukov;E. Olloqui;P. Hopchev;T. Szumlak;M. Witek;J. Back;J. Andrews;O. Schneider;G. Valenti;J. Vries;M. Majewski;A. Schopper;N. Belloli;F. Polci;F. Toriello;M. Cattaneo;C. Betancourt;A. Dovbnya;Jean François Marchand;J. Mead;G. Auriemma;A. Falabella;J. Rademacker;M. Traill;G. Coombs;M. Stahl;B. Couturier;S. Valat;W. Krzemień;F. Bossu;W. Parker;R. Bernet;D. Hutchcroft;F. M. Vidal;C. Patrignani;M. Rama;S. Koliiev;V. Obraztsov;J. Wimberley;S. Kandybei;N. Watson;J. D. Miranda;M. Schmelling;B. Spaan;J. Tilburg;R. G. Diaz;M. Szymanski;A. Tayduganov;C. Parkes;U. Straumann;A. Cook;K. Maguire;L. Grillo;M. Rihl;R. Dzhelyadin;L. Giubega;M. Vitti;L. C. Garcia;R. Fini;H. Wark;M. Bjoern;S. Hansmann;A. Usachov;P. Ghez;A. A. Albero;M. Kolpin;M. Tran;M. Williams;J. G. Ticó;I. Gorelov;F. Fleuret;J. Wicht;C. Méaux;B. Siddi;V. Romanovskiy;E. Thomas;J. Beddow;O. Leroy;S. Perazzini;E. Millard;E. Graverini;P. Pais;T. Fiutowski;D. Hill;R. Matev;Jackson Smith;C. S. Mayordomo;D. Lacarrere;V. Gibson;P. Carniti;R. Nandakumar;R. Coutinho - 通讯作者:
R. Coutinho
Xuesong Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuesong Liu', 18)}}的其他基金
SBIR Phase II: Big Data Analytics for Facility Operations and Management
SBIR 第二阶段:设施运营和管理的大数据分析
- 批准号:
1660158 - 财政年份:2017
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase II: Novel Platform for Visualizing Big Data in Virtual Reality
SBIR 第二阶段:虚拟现实中大数据可视化的新型平台
- 批准号:
2025890 - 财政年份:2020
- 资助金额:
$ 14.99万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Using big data, AI, and machine learning in gender equality and social inclusion analysis
SBIR 第一阶段:利用大数据、人工智能和机器学习进行性别平等和社会包容分析
- 批准号:
1843248 - 财政年份:2019
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
SBIR Phase I: Enhancing the skin microbiome for mosquito repellency: Next generation mosquito repellent derived from big data analysis
SBIR 第一阶段:增强皮肤微生物群以实现驱蚊作用:基于大数据分析的下一代驱蚊剂
- 批准号:
1843179 - 财政年份:2019
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
SBIR Phase I: Novel Platform for Visualizing Big Data in Virtual Reality
SBIR 第一阶段:虚拟现实中大数据可视化的新型平台
- 批准号:
1913536 - 财政年份:2019
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
SBIR Phase I: A Big Data Skills-To-Tasks Ontology For Career Mapping, Job Matching, And Talent Acquisition.
SBIR 第一阶段:用于职业规划、工作匹配和人才获取的大数据技能到任务本体。
- 批准号:
1846420 - 财政年份:2019
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
SBIR Phase II: A Security, Privacy and Governance Policy Enforcement Framework for Big Data
SBIR 第二阶段:大数据安全、隐私和治理政策执行框架
- 批准号:
1758628 - 财政年份:2018
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
SBIR Phase II: Combining Program Analysis Breakthroughs and Big Data to Improve Mobile App Quality
SBIR 第二阶段:结合程序分析突破和大数据来提高移动应用程序质量
- 批准号:
1738335 - 财政年份:2017
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
SBIR Phase II: Learning From Nature: Marine Educational Games With Big IDEAS (Innovative Differentiated Educational Assessments in Science)
SBIR 第二阶段:向大自然学习:具有大创意的海洋教育游戏(科学领域创新差异化教育评估)
- 批准号:
1660065 - 财政年份:2017
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
SBIR Phase II: Big Data Analytics for Facility Operations and Management
SBIR 第二阶段:设施运营和管理的大数据分析
- 批准号:
1660158 - 财政年份:2017
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
SBIR Phase I: NimbleDroid: Combining Program Analysis Breakthroughs and Big Data to Improve Mobile App Performance
SBIR 第一阶段:NimbleDroid:结合程序分析突破和大数据来提高移动应用程序性能
- 批准号:
1621982 - 财政年份:2016
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant














{{item.name}}会员




