SBIR Phase II: Big Data Analytics for Facility Operations and Management

SBIR 第二阶段:设施运营和管理的大数据分析

基本信息

  • 批准号:
    1660158
  • 负责人:
  • 金额:
    $ 74.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-05-15 至 2020-04-30
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project results from improving the efficiency in facilities management (FM) of institutional and commercial buildings by enabling a streamlined transition to efficient, proactive operations using the power of big data analytics. This provides an opportunity to reduce estimated $78.5 Billion - $127.3 Billion in waste due to reactive maintenance per year in the US commercial facilities market alone. A data driven, proactive approach provides a unique opportunity that enable facilities managers to assess as-is conditions of assets, avoid non value-add activities and plan maintenance tasks to avoid failures and shutdown. This will contribute towards transforming a traditional industry to an advanced data-driven one. It will also enable significant reduction in the disruptions caused to occupants due to failures in facilities. Given that Americans spend 85-90% of their time indoors and any disruptions caused by facilities directly impact their qualities of lives, the broader societal impact of reducing failures in facilities is significant. This Small Business Innovation Research (SBIR) Phase II project intends to research, develop and demonstrate the feasibility of using big data analytics and machine learning to transform facilities operations and maintenance decisions. Owners and operators of the over five million commercial and institutional buildings in the United States are faced with the challenges of managing aging and crowded building infrastructure. They waste between 30% and 40% of resources by operating in a predominantly inefficient, reactive mode. This project targets development of computational mechanisms that automatically analyze integrated building information to identify patterns that lead to actionable insights that help reduce non value-add activities and improve resource utilization in FM daily operation and planning. By combining advanced machine learning technologies with existing building information modeling (BIM) resources, the company is proposing to develop high-impact, statistical and visual methods for optimizing the decision-making abilities of facility managers and with that, the performance of critical facilities infrastructure and maintenance crews. The results of this research will include algorithms and methods to normalize heterogeneous building data, detect patterns and anomalies, from which actionable insights can be derived with domain knowledge, and generate qualitative and quantitative output appropriate for improved decision making in managing commercial facilities.
这个小企业创新研究(SBIR)二期项目的更广泛的影响/商业潜力来自于提高机构和商业建筑的设施管理(FM)效率,通过使用大数据分析的力量实现高效、主动运营的简化过渡。这提供了一个机会,每年仅在美国商业设施市场,就可以减少约785亿至1273亿美元的无功维护浪费。数据驱动的主动方法为设施管理人员提供了一个独特的机会,使他们能够评估资产的现状,避免非增值活动,并计划维护任务,以避免故障和停机。这将有助于将传统行业转变为先进的数据驱动行业。它还将大大减少因设施故障而对居住者造成的干扰。鉴于美国人85% -90%的时间都在室内度过,任何由设施造成的干扰都会直接影响他们的生活质量,减少设施故障的更广泛的社会影响是显著的。这个小型企业创新研究(SBIR)二期项目旨在研究、开发和展示使用大数据分析和机器学习来改变设施运营和维护决策的可行性。在美国,超过500万的商业和机构建筑的业主和经营者面临着管理老化和拥挤的建筑基础设施的挑战。它们以一种效率低下的被动模式运行,浪费了30%到40%的资源。该项目的目标是开发计算机制,自动分析综合建筑信息,以识别模式,从而产生可操作的见解,帮助减少非增值活动,并提高FM日常操作和计划中的资源利用率。通过将先进的机器学习技术与现有的建筑信息模型(BIM)资源相结合,该公司提议开发高影响力、统计和可视化的方法,以优化设施管理人员的决策能力,并以此优化关键设施基础设施和维护人员的绩效。这项研究的结果将包括规范化异构建筑数据的算法和方法,检测模式和异常,从中可以从领域知识中获得可操作的见解,并产生适合于改进商业设施管理决策的定性和定量输出。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xuesong Liu其他文献

The efficacy of convalescent plasma for the treatment of severe influenza
恢复期血浆治疗重症流感的疗效
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiheng Xu;Jianmeng Zhou;Yongbo Huang;Xuesong Liu;Yong;Si;Dong;Zhimin Lin;Xiaoqing Liu;Yimin Li
  • 通讯作者:
    Yimin Li
In situ regeneration of sulfated Cu/SAPO-34 catalyst forthe selective catalytic reduction of NOx with NH3
硫酸化 Cu/SAPO-34 催化剂的原位再生用于 NH3 选择性催化还原 NOx
Measurement of the $Upsilon$ polarization in $pp$ collisions at $sqrt{s}$=7 and 8TeV
测量 $sqrt{s}$=7 和 8TeV 下 $pp$ 碰撞中的 $Upsilon$ 偏振
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Aaij;G. Ciezarek;P. Collins;S. Roiser;W. Qian;A. Vollhardt;B. Storaci;D. M. Tostes;D. O’Hanlon;M. Merk;C. Jones;D. Galli;M. Minard;D. Berninghoff;P. Garsed;P. Krokovny;M. Corvo;I. Polyakov;A. Camboni;Peilian Li;F. Lemaitre;B. Sciascia;J. Wishahi;E. Sadykhov;V. Chobanova;T. Kirn;M. R. Salzgeber;M. Palutan;N. Tuning;A. Dendek;A. Mogini;S. Bachmann;D. Gascón;T. Evans;M. Kelsey;H. Luo;N. Harnew;O. Morgunova;T. Klimkovich;M. Chrzaszcz;O. Maev;G. Haefeli;S. Stone;G. Fernandez;H. Evans;S. Barsuk;F. Maciuc;A. Piucci;E. Tournefier;D. Pinci;M. Baalouch;A. Canto;A. Rollings;G. Graziani;O. Girard;C. Baesso;R. Waldi;N. Nikitin;O. Grünberg;D. Vieira;S. Stahl;S. Neubert;E. Smith;M. Schellenberg;J. P. Grabowski;M. Needham;I. Bordyuzhin;E. Sepúlveda;B. Schmidt;K. Gizdov;C. Hasse;C. Pappenheimer;I. Belyaev;A. Petrov;I. Smith;M. Altarelli;O. Stenyakin;C. Dean;M. Szczekowski;L. Eklund;L. Martin;D. Marangotto;A. Gomes;M. Kenzie;H. Stevens;P. Pérez;A. Borgheresi;M. Hecker;A. Carbone;O. Deschamps;D. Chamont;B. Viaud;M. Beuzekom;A. Merli;M. Fiorini;P. Spradlin;L. An;V. Müller;K. Belous;A. Pearce;R. Oldeman;M. Dziewiecki;F. Blanc;S. Karodia;Shanzhen Chen;M. Whitehead;Juan Silva;P. H. Hopchev;M. Sokoloff;J. Rodriguez;F. Lionetto;M. Petruzzo;L. G. H. D. Oliveira;N. Serra;V. Molina;M. Vernet;J. Velthuis;G. Tellarini;V. Gligorov;T. Verlage;P. Charpentier;R. Aoude;E. Gabriel;A. Ossowska;F. Stagni;A. Hicheur;B. Maddock;M. Kecke;E. Herwijnen;L. Anderlini;Zhuoming Li;R. Forty;Yuehong Xie;L. Sestini;L. Dufour;X. Vilasís;L. S. Lavra;D. Ward;A. Valassi;M. Idzik;S. Nieswand;M. Reboud;A. F. Prieto;B. R. G. Cazon;Yuanning Gao;L. Federici;P. Billoir;C. Nguyen;J. Romeu;S. Tolk;J. Müller;B. Hamilton;T. Gys;Suvayu Ali;A. A. Alves;M. Martinelli;E. Grauges;S. Richards;P. Mackowiak;M. Tilley;K. Petridis;M. Borsato;B. Voneki;E. Gersabeck;F. Muheim;F. Marinho;N. Kazeev;S. Stemmle;E. Santovetti;M. Vesterinen;U. Marconi;T. Skwarnicki;M. Veghel;S. Blusk;M. Shapkin;R. Lindner;Sergey Filippov;S. Eisenhardt;H. Schreiner;S. Schael;T. Ruf;S. Monteil;C. Burr;M. Rangel;B. Rachwał;A. Berezhnoy;B. Dey;J. Cogan;E. Jans;F. Bedeschi;M. P. Casasus;Tenglin Li;M. Ebert;A. Davis;V. Shevchenko;A. Sarti;I. Longstaff;A. Palano;C. Benito;M. Andreotti;A. Bay;H. Yin;D. Gerick;F. Ratnikov;D. Mitzel;A. Weiden;M. E. Stramaglia;E. Govorkova;M. Santimaria;F. Meier;A. Rodrigues;J. Blouw;A. Heister;K. Akiba;E. Khairullin;V. Pugatch;M. Dorigo;M. Veltri;S. Ely;R. Wallace;A. Pellegrino;R. Kopecná;J. Kariuki;Liming Zhang;M. Rotondo;A. Mathad;B. Pietrzyk;M. Artuso;A. Lupato;C. Gaspar;A. Tsaregorodtsev;C. Göbel;Z. Ajaltouni;S. Sridharan;L. Beaucourt;A. Jawahery;F. Dordei;A. Malinin;A. G. Torreira;D. Craik;D. M. Santos;M. Wilkinson;D. C. Pérez;G. Gazzoni;Yanxi Zhang;L. Bel;C. Joram;A. Satta;A. Kosmyntseva;U. Uwer;D. Loh;L. Gruber;M. Calvi;G. Lafferty;L. Carson;J. Goicochea;A. Sciubba;Mike Williams;J. Brodzicka;A. Vorobyev;G. Alkhazov;B. Meadows;I. Shapoval;S. Cadeddu;H. Dijkstra;C. Wallace;N. Neufeld;O. Francisco;D. Müller;M. Hushchyn;J. Lopes;K. Wyllie;A. Robert;H. Schindler;P. Cartelle;T. Humair;A. Morris;Zhirui Xu;A. Badalov;N. Sagidova;V. Vagnoni;M. Lener;J. Buytaert;P. Simone;S. Vecchi;F. Baryshnikov;S. Bifani;A. Papanestis;D. Lucchesi;S. Coquereau;M. Patel;A. Bursche;J. Lefrancois;M. Marinangeli;K. Klimaszewski;J. Zonneveld;R. Calabrese;V. Cogoni;X. C. Vidal;T. Likhomanenko;R. Lefèvre;D. Savrina;A. Bertolin;F. Betti;F. Kruse;E. Aslanides;Á. Suárez;P. Clarke;V. Battista;G. Chatzikonstantinidis;D. Golubkov;P. Soler;L. Shekhtman;C. S. Rios;F. Dettori;E. Furfaro;P. F. Declara;S. Benson;S. Esen;K. Heinicke;Zishuo Yang;P. Griffith;A. Grecu;S. Kotriakhova;S. Klaver;M. Borysova;P. Perret;S. Gallorini;P. Ilten;M. C. Gomez;A. Oblakowska;N. Neri;D. Maisuzenko;G. Passaleva;S. Zucchelli;S. Gambetta;L. Cardoso;R. Gac;S. Haines;Zhenwei Yang;A. Zhelezov;T. Hancock;D. Tonelli;E. Bowen;W. Byczynski;M. Fontana;W. Bonivento;F. Wilson;P. Gandini;G. Martellotti;E. Ben;Yiming Li;A. Sergi;S. Stefkova;N. Beliy;A. Golutvin;S. Ponce;Federico Alessio;D. Brundu;T. Blake;C. Khurewathanakul;T. Latham;B. Saitta;Z. Huard;R. Niet;A. Comerma;C. Satriano;S. Wotton;C. Voß;W. Funk;D. Ferguson;M. Kucharczyk;H. Cliff;A. Massafferri;C. Haen;M. Morandin;K. Hennessy;P. Owen;L. Gavardi;R. Currie;G. Cavallero;R. Appleby;M. Demmer;M. Kozeiha;V. Volkov;G. Mancinelli;J. Prisciandaro;C. Prouve;D. Milanes;G. Bencivenni;S. Stracka;M. Sirendi;T. Mombächer;V. F. Lima;J. Fu;M. Boubdir;L. Henry;N. Meinert;E. Michielin;P. Durante;A. Reis;L. Pescatore;M. Hatch;T. Ketel;P. Valls;M. Neuner;T. Nikodem;R. Santacesaria;D. Websdale;V. Kudryavtsev;M. Martin;E. Cogneras;B. Maurin;P. Naik;M. Serio;M. Schubiger;K. Zarebski;P. Stefko;M. Mulder;G. Sarpis;V. Vorobyev;Liang Sun;M. C. Torres;A. Bizzeti;P. Koppenburg;T. Boettcher;G. Wilkinson;A. Lai;S. Maddrell;S. Amerio;V. Balagura;V. Placinta;M. Schune;G. Simi;A. Artamonov;A. Mauri;R. Quagliani;R. Calladine;H. Viemann;J. Serrano;V. Bocci;G. Onderwater;H. Dembinski;O. Yushchenko;M. Cian;M. Tresch;G. Veneziano;M. Ferro;G. Wormser;T. Britton;S. T’Jampens;Z. Máthé;S. Borghi;J. G. Pardiñas;Jiesheng Yu;M. Zavertyaev;R. V. Gomez;S. Baker;P. Regueiro;A. McNab;C. Fitzpatrick;I. Raniuk;J. Moroń;A. Kuonen;V. Egorychev;T. Kvaratskheliya;K. Wraight;R. Cenci;W. Wiślicki;A. Cardini;M. Heß;A. Dzyuba;B. Quintana;J. Closier;A. Popov;L. Tomassetti;T. Bowcock;S. Akar;I. Bediaga;E. Maurice;G. Penso;V. Tisserand;C. Lazzeroni;M. Pikies;W. Barter;S. Farry;A. Trisovic;B. S. Sedes;M. Borisyak;M. Kreps;S. Beranek;S. Malde;Xiaoxue Han;Y. Amhis;V. Batozskaya;T. Gershon;Jiayin Sun;L. Pappalardo;T. Nakada;A. Leflat;F. Archilli;L. Massacrier;R. Barlow;F. Teubert;S. Poslavskii;F. Machefert;B. S. D. Paula;L. Minzoni;P. d’Argent;M. V. Diaz;C. Barschel;P. Campana;L. Cojocariu;S. Reichert;A. Petrolini;X. Lyu;B. Adeva;E. Cid;Andrey Ustyuzhanin;A. Nogay;T. Tekampe;C. Bozzi;T. Hadavizadeh;A. Loi;K. Fohl;M. Adinolfi;A. Mazurov;V. Renaudin;E. Price;N. Skidmore;I. Nasteva;P. Jalocha;R. Mountain;C. Vacca;F. Redi;I. Bezshyiko;E. Polycarpo;L. Cassina;T. D. Nguyen;M. Stepanova;A. Birnkraut;E. Luppi;A. Lusiani;Miriam Lucio Martínez;Yangheng Zheng;J. Dalseno;A. Semennikov;E. Buchanan;M. Pappagallo;M. Morello;J. Marks;J. Vidal;M. Karacson;T. Schmelzer;C. Matteuzzi;P. Henrard;M. Bettler;A. Navarro;Y. Guz;W. Hulsbergen;P. Ciambrone;Maria Aranzazu Oyanguren;R. Jacobsson;S. Easo;M. Gandelman;H. Cai;T. Shears;Mark E. Smith;S. Ricciardi;U. Egede;D. Decamp;G. Cowan;P. Seyfert;S. Braun;M. Alexander;S. Cheung;M. Charles;M. Williams;A. Pistone;Daniel Johnson;B. Khanji;V. Guimaraes;F. Rodrigues;A. Nandi;E. Rodrigues;Y. Shcheglov;A. Poluektov;I. Monroy;E. Bertholet;M. Chefdeville;L. Buono;F. Jiang;L. Garrido;E. Dall’Occo;S. Chitic;G. Punzi;A. Baranov;A. Pastore;P. Robbe;G. Corti;J. Albrecht;D. Derkach;M. John;M. Schiller;D. Fazzini;O. Lupton;H. Pullen;G. Manca;D. Forshaw;J. Ronayne;J. Barbosa;P. Marino;V. Macko;A. Ukleja;G. Dujany;P. Tsopelas;V. Lisovskyi;K. Rinnert;C. Alepuz;C. D’Ambrosio;B. Leverington;M. McCann;K. Swientek;K. Müller;M. R. Pernas;T. Maltsev;S. Gianì;E. Gushchin;T. Lesiak;I. Komarov;S. Amato;P. Nezza;D. Melnychuk;K. Schubert;R. Cardinale;M. Winn;J. Walsh;D. Saunders;S. Harnew;L. Paula;A. Chubykin;A. Crocombe;C. M. Sobral;V. Bellee;C. Sierra;K. Kurek;C. Frei;N. Jurik;N. Farley;C. Potterat;M. Tobin;A. Bondar;M. Gersabeck;W. Sutcliffe;C. Hadjivasiliou;M. Frank;N. Bondar;W. Kucewicz;J. Lopez;Jianchun Wang;R. Schwemmer;W. Baldini;A. Beiter;S. Eidelman;R. Greim;M. Straticiuc;A. Contu;K. Dreimanis;L. Douglas;A. Rogozhnikov;V. Syropoulos;G. Andreassi;G. Casse;T. Colombo;Xuesong Liu;A. R. Vidal;M. Schlupp;A. Vagner;C. Färber;D. Popov;A. Venkateswaran;S. Capua;A. Tully;X. Yuan;L. Capriotti;T. Williams;F. Ferrari;M. Rudolph;S. Simone;A. Dziurda;M. Firlej;Jibo He;R. McNulty;C. Langenbruch;D. Gonzalo;I. Babuschkin;G. Pomery;C. Gotti;O. Steinkamp;G. Lanfranchi;M. Clemencic;U. Eitschberger;F. Fontanelli;G. Carboni;S. Playfer;P. Ibis;B. Jost;Xianglei Zhu;J. Maratas;G. Raven;R. Ekelhof;S. Ogilvy;Yuezhe Yao;V. Zhukov;E. Olloqui;P. Hopchev;T. Szumlak;M. Witek;J. Back;J. Andrews;O. Schneider;G. Valenti;J. Vries;M. Majewski;A. Schopper;N. Belloli;F. Polci;F. Toriello;M. Cattaneo;C. Betancourt;A. Dovbnya;Jean François Marchand;J. Mead;G. Auriemma;A. Falabella;J. Rademacker;M. Traill;G. Coombs;M. Stahl;B. Couturier;S. Valat;W. Krzemień;F. Bossu;W. Parker;R. Bernet;D. Hutchcroft;F. M. Vidal;C. Patrignani;M. Rama;S. Koliiev;V. Obraztsov;J. Wimberley;S. Kandybei;N. Watson;J. D. Miranda;M. Schmelling;B. Spaan;J. Tilburg;R. G. Diaz;M. Szymanski;A. Tayduganov;C. Parkes;U. Straumann;A. Cook;K. Maguire;L. Grillo;M. Rihl;R. Dzhelyadin;L. Giubega;M. Vitti;L. C. Garcia;R. Fini;H. Wark;M. Bjoern;S. Hansmann;A. Usachov;P. Ghez;A. A. Albero;M. Kolpin;M. Tran;M. Williams;J. G. Ticó;I. Gorelov;F. Fleuret;J. Wicht;C. Méaux;B. Siddi;V. Romanovskiy;E. Thomas;J. Beddow;O. Leroy;S. Perazzini;E. Millard;E. Graverini;P. Pais;T. Fiutowski;D. Hill;R. Matev;Jackson Smith;C. S. Mayordomo;D. Lacarrere;V. Gibson;P. Carniti;R. Nandakumar;R. Coutinho
  • 通讯作者:
    R. Coutinho
Dysregulation of cholesterol metabolism in cancer progression
  • DOI:
    10.1038/s41388-023-02836-x
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
  • 作者:
    Xuesong Liu;Mengzhu Lv;Weimin Zhang;Qimin Zhan
  • 通讯作者:
    Qimin Zhan
A long non-coding RNA associated with H3K27me3 methylation negatively regulates OsZIP16 transcription under cadmium stress
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
  • 作者:
    He Li;Xuesong Liu;Di Sun;Zhimin Yang
  • 通讯作者:
    Zhimin Yang

Xuesong Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xuesong Liu', 18)}}的其他基金

SBIR Phase I: Big Data Analytics for Facility Operations and Management
SBIR 第一阶段:设施运营和管理的大数据分析
  • 批准号:
    1549078
  • 财政年份:
    2016
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Standard Grant

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ATLAS实验探测器Phase 2升级
  • 批准号:
    11961141014
  • 批准年份:
    2019
  • 资助金额:
    3350 万元
  • 项目类别:
    国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
  • 批准号:
    41802035
  • 批准年份:
    2018
  • 资助金额:
    12.0 万元
  • 项目类别:
    青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
  • 批准号:
    61675216
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于Phase-type分布的多状态系统可靠性模型研究
  • 批准号:
    71501183
  • 批准年份:
    2015
  • 资助金额:
    17.4 万元
  • 项目类别:
    青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
  • 批准号:
    51201142
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
  • 批准号:
    11101428
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
  • 批准号:
    19374069
  • 批准年份:
    1993
  • 资助金额:
    6.4 万元
  • 项目类别:
    面上项目

相似海外基金

SBIR Phase II: Innovative Two-Phase Cooling with Micro Closed Loop Pulsating Heat Pipes for High Power Density Electronics
SBIR 第二阶段:用于高功率密度电子产品的创新两相冷却微闭环脉动热管
  • 批准号:
    2321862
  • 财政年份:
    2024
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: Innovative Glass Inspection for Advanced Semiconductor Packaging
SBIR 第二阶段:先进半导体封装的创新玻璃检测
  • 批准号:
    2335175
  • 财政年份:
    2024
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: Intelligent Language Learning Environment
SBIR第二阶段:智能语言学习环境
  • 批准号:
    2335265
  • 财政年份:
    2024
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: FlashPCB Service Commercialization and AI Component Package Identification
SBIR第二阶段:FlashPCB服务商业化和AI组件封装识别
  • 批准号:
    2335464
  • 财政年份:
    2024
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
  • 批准号:
    2335504
  • 财政年份:
    2024
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: Sodium-Based Solid-State Batteries for Stationary Energy Storage
SBIR第二阶段:用于固定储能的钠基固态电池
  • 批准号:
    2331724
  • 财政年份:
    2024
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: A mesh-free, sling-free, minimally invasive treatment for stress urinary incontinence in women
SBIR II 期:无网、无吊带的微创治疗女性压力性尿失禁
  • 批准号:
    2233106
  • 财政年份:
    2024
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: Zero Trust Solution for Precision Medicine and Precision Health Data Exchanges
SBIR 第二阶段:精准医疗和精准健康数据交换的零信任解决方案
  • 批准号:
    2226026
  • 财政年份:
    2024
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: High-Performance Batteries to Decarbonize Heavy Duty Construction Equipment
SBIR 第二阶段:高性能电池使重型建筑设备脱碳
  • 批准号:
    2335320
  • 财政年份:
    2024
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Cooperative Agreement
SBIR Phase II: Technology for Stimulating the Herd Instinct of Livestock to Reduce Environmental Impact
SBIR第二阶段:刺激牲畜的群体本能以减少环境影响的技术
  • 批准号:
    2335554
  • 财政年份:
    2024
  • 资助金额:
    $ 74.04万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了