EAGER: Predictive Entropy-based State-Space Methodologies For Early-Warning of Critical System Transitions

EAGER:基于预测熵的状态空间方法用于关键系统转换的预警

基本信息

  • 批准号:
    1549517
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

The project aims at developing a potentially transformative approach and methodologies for early-warning indicators for impending critical transitions or catastrophic failure in engineered and biological systems. The methodologies will employ uncertainty measures, such as various forms of entropy ( a measure of disorder in systems), and independent signal components to predict the impending onset of critical transitions to failure. The availability of early-warning system indicators would profoundly impact a broad range of engineering and natural systems. Relevant examples of engineered systems include power and communication networks, aircraft engines, industrial robots, electronics, machines and bridge infrastructures; examples of natural systems include epileptic seizures, organ failures, heart attacks and brain strokes. Specifically, predictive indicators for the impending onset of power system failures, based on sensory measurements, is crucial for taking steps to prevent sudden failures, including blackouts.The focus of the research is on entropy-based dynamically predictive indicators that give warning signals prior to the onset of catastrophic critical transitions. In the case of engineered systems, e.g., power generators and power systems, the approach would exploit the existence of reliable compact models for its predictive inference. For natural systems, e.g., predicting the impending epileptic seizures from EEG measurements, the approach would adaptively identify a viable model while simultaneously extracting indicators for its prediction. In both domains, the goal is to extract ensembles of the state signal's independent components and their statistical indicators from measurement profiles to infer the impending catastrophic transition to failure. The approach is expected to develop a new transformative framework of entropy-based core state independent components and fuse it into the established realm of Kalman and nonlinear prediction ideas as well as the dynamical systems concepts of critical transitions to bifurcations and chaos. It thus advances and integrates the disparate disciplines of (i) statistical independent component analysis, (ii) dynamical systems bifurcations, and (iii) recursive prediction system theory including the Kalman and nonlinear predictors. The goal is to develop the approach and methodologies for early-warning predictive systems, and validate their performance on specific prototype engineering models as well as natural (biological) systems.
该项目的目的是为工程和生物系统中即将发生的关键转变或灾难性故障的预警指标制定一种可能具有变革意义的方法和方法。该方法将采用不确定性度量,例如各种形式的熵(系统中无序的度量)和独立的信号分量来预测即将发生的关键过渡到故障。预警系统指标的可用性将对广泛的工程和自然系统产生深远的影响。工程系统的相关例子包括电力和通信网络、飞机发动机、工业机器人、电子、机器和桥梁基础设施;自然系统的例子包括癫痫发作、器官衰竭、心脏病发作和脑中风。具体来说,基于感官测量的电力系统即将发生故障的预测指标对于采取措施防止突然故障(包括停电)至关重要。研究的重点是基于熵的动态预测指标,在灾难性关键转变发生之前给出警告信号。在工程系统的情况下,例如,发电机和电力系统,该方法将利用可靠的紧凑模型的存在进行预测推理。对于自然系统,例如,从脑电图测量预测即将发生的癫痫发作,该方法将自适应地识别一个可行的模型,同时提取其预测的指标。在这两个领域中,目标是从测量剖面中提取状态信号的独立分量及其统计指标的集合,以推断即将发生的灾难性过渡到故障。该方法有望开发一种新的基于熵的核心状态独立分量的转换框架,并将其融合到卡尔曼和非线性预测思想的既定领域以及向分岔和混沌的临界过渡的动力系统概念中。因此,它推进并整合了(i)统计独立成分分析,(ii)动力系统分岔,以及(iii)递归预测系统理论,包括卡尔曼和非线性预测器。目标是开发早期预警预测系统的方法和方法,并在特定的原型工程模型以及自然(生物)系统上验证其性能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fathi Salem其他文献

Incorporating the principles of oncoplastic surgery to treat recurrent breast abscess - Case report
  • DOI:
    10.1016/j.ejso.2023.03.043
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sima Patel;Ehsanur Rahman;Fathi Salem;Pilar Matey
  • 通讯作者:
    Pilar Matey
1. Outcome following 150 prepectoral implant based breast reconstruction using Braxon<sup>®</sup> (ADM): UK experience
  • DOI:
    10.1016/j.ejso.2017.01.020
  • 发表时间:
    2017-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Raghavan Vidya;Alison Hunter Smith;Fathi Salem;Neeraj Garg;Amar Dhespande;Pud Bhaskar;Tapan Sircar;Simon Cawthorn
  • 通讯作者:
    Simon Cawthorn
Dedicated under 35 breast clinic: Is this the answer?
  • DOI:
    10.1016/j.ejso.2017.01.026
  • 发表时间:
    2017-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Fathi Salem;Caroline Jones;Ruvinder Athwal;Tapan Sircar;Raghavan Vidya
  • 通讯作者:
    Raghavan Vidya

Fathi Salem的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fathi Salem', 18)}}的其他基金

SGER: Integrated Actuation Arrays for High Speed AFM Protein Imaging Systems
SGER:用于高速 AFM 蛋白质成像系统的集成驱动阵列
  • 批准号:
    0840047
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Real-time Sensing and Control Computing for Automotive Systems
汽车系统的实时传感和控制计算
  • 批准号:
    9700741
  • 财政年份:
    1997
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Complicated Dynamics and Their Implications for System Design Methodologies
复杂动力学及其对系统设计方法的影响
  • 批准号:
    8702889
  • 财政年份:
    1987
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Engineering Foundation Conference on Qualitative Methods forthe Analysis on Nonlinear Dynamics II, June 8-13, 1986, Asilomar Conference Grounds, Pacific Grove, Ca.
非线性动力学分析定性方法 II 工程基金会会议,1986 年 6 月 8-13 日,阿西洛玛会议场地,太平洋丛林,加利福尼亚州。
  • 批准号:
    8516362
  • 财政年份:
    1986
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Research Initiation: Chaos and Arnold Diffusion and Their Implications in Electric Power Networks: Stability Design Constraints
研究启动:混沌和阿诺德扩散及其对电力网络的影响:稳定性设计约束
  • 批准号:
    8596004
  • 财政年份:
    1985
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Research Initiation: Chaos and Arnold Diffusion and Their Implications in Electric Power Networks: Stability Design Constraints
研究启动:混沌和阿诺德扩散及其对电力网络的影响:稳定性设计约束
  • 批准号:
    8404723
  • 财政年份:
    1984
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Anti-infective therapeutics and predictive modelling to tackle Staphylococcus aureus disease
应对金黄色葡萄球菌疾病的抗感染疗法和预测模型
  • 批准号:
    EP/X022935/2
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
Unlocking the sensory secrets of predatory wasps: towards predictive tools for managing wasps' ecosystem services in the Anthropocene
解开掠食性黄蜂的感官秘密:开发用于管理人类世黄蜂生态系统服务的预测工具
  • 批准号:
    NE/Y001397/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Development of a predictive biomarker for Parkinson's disease
帕金森病预测生物标志物的开发
  • 批准号:
    MR/Y019415/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
CAREER:HCC: Using Virtual Reality Gaming to Develop a Predictive Simulation of Human-Building Interactions: Behavioral and Emotional Modeling for Public Space Design
职业:HCC:使用虚拟现实游戏开发人类建筑交互的预测模拟:公共空间设计的行为和情感建模
  • 批准号:
    2339999
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Creating healthier homes for children with asthma:Developing a predictive model for environmental
为哮喘儿童创建更健康的家庭:开发环境预测模型
  • 批准号:
    2908612
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Predictive Assessment of Material Failure
材料失效的预测评估
  • 批准号:
    2904642
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
CAREER: Predictive Multiscale Modeling of Cell Migration through Pores between Endothelial Cells
职业:通过内皮细胞之间的孔进行细胞迁移的预测多尺度建模
  • 批准号:
    2339054
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Mechanistic niche predictive modelling of plant invasion at the range front
山脉前沿植物入侵的机械生态位预测模型
  • 批准号:
    EP/Y028473/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了