EAGER: Properties of ultra-sparse resonant photonic lattices

EAGER:超稀疏共振光子晶格的特性

基本信息

  • 批准号:
    1549851
  • 负责人:
  • 金额:
    $ 10.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-02-28
  • 项目状态:
    已结题

项目摘要

EAGER: Development of ultra-sparse nanoscale resonant reflectors and polarizersThe objective of this proposal is to design, fabricate, and characterize wideband resonant reflectors and polarizers that require extremely small amounts of matter in their embodiments. Polarizers are essential components in every-day optical systems. They are used, for example, in liquid-crystal television screens and computer and cell-phone displays. Similarly, reflectors are widely used in optical imaging systems, telecommunications, and laser technology. Shown here is the remarkable and counterintuitive fact that a nanoscale periodic layer that is 95% empty space can reflect light at 100% efficiency across a 100-nm-wide spectral band. This simple device exhibits impressive polarizing performance as well. We call these elements ultra-sparse reflectors and polarizers. As these devices incorporate no metals, they are lossless and thus operate on incident light with high efficiency and without generating any heat. The project contributes to fundamental understanding of this class of devices and thereby lays foundation for its applications in common photonic systems. The proposed research project will focus on a spectral region spanning from the visible region into the infrared range where common telecommunication systems operate. However, it is noted that the fundamental physics of these elements does not limit their deployment to these regions. Hence, future developments in longer wavelength regions such as the far-infrared and terahertz bands may enable compact low-loss elements to be realized in these regions as well. The proposed project therefore lays a foundation for devices with new operational regimes and attendant possible applications in multiple practical spectral regions. We introduce ultra-sparse reflectors and polarizers based on original new ideas in photonic device engineering. Under the project, prototype devices will be fashioned in nearly lossless semiconductors and dielectrics as membranes surrounded by air or glass host media. Initial focus is on spectral operation within the 400-2400 nm region. Using available nanofabrication processing facilities, we will fabricate representative devices as proof-of-concept prototypes, measure their spectral response, and compare with theoretical predictions. From a fundamental physics standpoint, it is extremely significant that the wideband spectral expressions presented can be generated in these minimal resonance systems. The proposed research is justified on that basis alone. Therefore, the project has strong potential to advance the state of knowledge and understanding in nanophotonic resonance systems. Contrary to widely accepted views, interference between two grating-ridge located Fabry-Perot modes is not the cause of the observed wideband reflection. Therefore, it follows logically that the number of such modes in a grating ridge is immaterial as far as the fundamental physics is concerned. We show that wideband reflectors are indeed achievable with a single supported ridge mode. This fact allows us to conceptualize resonant elements that are mostly free space with minimal physical bulk, an extremely interesting and important finding. To improve the state of understanding in this field, we plan on wide dissemination of the results of the research. This will broaden the design space available to scientists and engineers innovating within this device class.
渴望:超稀疏纳米级谐振反射器和偏振器的发展本提案的目标是设计、制造和表征宽带谐振反射器和偏振器,这些反射器和偏振器在其实施例中需要极少量的物质。偏光镜是日常光学系统中必不可少的部件。例如,它们被用于液晶电视屏幕、电脑和手机显示屏。同样,反射器也广泛用于光学成像系统、电信和激光技术。这里展示的是一个引人注目的和违反直觉的事实:一个纳米级的周期层,95%的空间是空的,可以在100纳米宽的光谱带内以100%的效率反射光。这个简单的装置也表现出令人印象深刻的偏振性能。我们称这些元件为超稀疏反射器和偏振器。由于这些装置不含金属,所以它们是无损的,因此在入射光下工作效率很高,而且不会产生任何热量。该项目有助于对这类器件的基本理解,从而为其在普通光子系统中的应用奠定基础。拟议的研究项目将侧重于从可见光区域到普通电信系统运行的红外范围的光谱区域。然而,值得注意的是,这些元素的基本物理学并不限制它们在这些区域的部署。因此,在诸如远红外和太赫兹波段等较长波长区域的未来发展可能使这些区域也能实现紧凑的低损耗元件。因此,拟议的项目为具有新操作机制的设备及其在多个实际频谱区域的可能应用奠定了基础。基于光子器件工程的新思路,介绍了超稀疏反射器和偏振器。在这个项目中,原型设备将被制成几乎无损的半导体和电介质,作为被空气或玻璃介质包围的膜。最初的重点是400-2400 nm区域内的光谱操作。利用现有的纳米加工设备,我们将制造具有代表性的设备作为概念验证原型,测量它们的光谱响应,并与理论预测进行比较。从基础物理学的角度来看,在这些最小共振系统中可以产生宽带谱表达式是非常重要的。仅就这一点而言,拟议的研究是合理的。因此,该项目具有很强的潜力来推进对纳米光子共振系统的认识和理解。与广泛接受的观点相反,位于法布里-珀罗模式的两个光栅脊之间的干涉并不是观测到宽带反射的原因。因此,从逻辑上讲,就基础物理而言,光栅脊中这种模式的数量是无关紧要的。我们表明,宽带反射器确实可以实现单一的支持脊模式。这一事实使我们能够将共振元素概念化,这些共振元素大多是具有最小物理体积的自由空间,这是一个非常有趣和重要的发现。为了提高对这一领域的了解,我们计划广泛传播研究结果。这将扩大科学家和工程师在这类设备中创新的设计空间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Magnusson其他文献

Fabrication and Characterization of Large, Perfectly Periodic Arrays of Metallic Nanocups
大型、完全周期性金属纳米杯阵列的制造和表征
  • DOI:
    10.1007/s11468-012-9355-3
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3
  • 作者:
    H. Svavarsson;J. Yoon;M. Shokooh;M. Shokooh;Seok Ho Song;Robert Magnusson
  • 通讯作者:
    Robert Magnusson
Double-Channel Notch Filters Under Angular Tuning on 2D Resonant Gratings
二维谐振光栅角度调谐下的双通道陷波滤波器
Resonance properties of simple and topological optical lattice slabs
简单拓扑光学晶格板的共振特性

Robert Magnusson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Magnusson', 18)}}的其他基金

PFI-TT: Development of high-performance nanostructured polarizers
PFI-TT:高性能纳米结构偏光片的开发
  • 批准号:
    1826966
  • 财政年份:
    2018
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Standard Grant
Band Flips and Bound States in Leaky-Mode Resonant Photonic Lattices
漏模谐振光子晶格中的能带翻转和束缚态
  • 批准号:
    1809143
  • 财政年份:
    2018
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Standard Grant
Engineered nanophotonic Raman amplifiers and lasers
工程纳米光子拉曼放大器和激光器
  • 批准号:
    1606898
  • 财政年份:
    2016
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Standard Grant
PFI:AIR - TT: Demonstration of parametrically robust wideband resonant reflectors
PFI:AIR - TT:参数稳健的宽带谐振反射器演示
  • 批准号:
    1444922
  • 财政年份:
    2014
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Standard Grant
Dispersion engineering using leaky-mode resonant photonic lattices
使用漏模谐振光子晶格的色散工程
  • 批准号:
    0925774
  • 财政年份:
    2009
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Standard Grant
Tunable photonic nanostructures exhibiting plasmonic and leaky-mode resonances
表现出等离子体和泄漏模式共振的可调谐光子纳米结构
  • 批准号:
    0702307
  • 财政年份:
    2007
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Standard Grant
Resonant Leaky-Mode Photonic-Crystal Devices with Engineered Spectra
具有工程光谱的谐振漏模光子晶体器件
  • 批准号:
    0524383
  • 财政年份:
    2005
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Standard Grant
Research Scholars in Electrical Engineering
电气工程研究学者
  • 批准号:
    9531506
  • 财政年份:
    1996
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Continuing Grant
Research Scholars in Electrical Engineering
电气工程研究学者
  • 批准号:
    9300546
  • 财政年份:
    1993
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Continuing Grant
CHARACTERISTICS OF OPTICAL GUIDED-MODE RESONANCE FILTERS
光导模谐振滤波器的特性
  • 批准号:
    9120856
  • 财政年份:
    1992
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Continuing Grant
Exploration of the Molecular Weight-Dependent Properties of the Electron Transport Layer for the Ultra-Stable Organic Photodetectors
超稳定有机光电探测器电子传输层分子量依赖性特性的探索
  • 批准号:
    23K13373
  • 财政年份:
    2023
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Adrenergic transmission properties and implication
肾上腺素能传输特性及意义
  • 批准号:
    10637114
  • 财政年份:
    2023
  • 资助金额:
    $ 10.35万
  • 项目类别:
Inhaled gas and Ultra-short/zero-echo time MRI of pulmonary airways and airspaces for modelling the morphometry and biomechanical properties of pulmonary parenchyma and airways
吸入气体和肺气道和空腔的超短/零回波时间 MRI,用于模拟肺实质和气道的形态测量和生物力学特性
  • 批准号:
    RGPIN-2016-04760
  • 财政年份:
    2022
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Discovery Grants Program - Individual
Ultra-Liquid-Repellent Surfaces: from wetting to anti-biofouling properties
超防液表面:从润湿性能到抗生物污损性能
  • 批准号:
    EP/W010852/1
  • 财政年份:
    2022
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Research Grant
Understanding carrier transport properties of ultra-thin semiconductor channel CMOS and establishing a method to enhance channel mobility
了解超薄半导体沟道CMOS的载流子传输特性并建立增强沟道迁移率的方法
  • 批准号:
    22H00208
  • 财政年份:
    2022
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Inhaled gas and Ultra-short/zero-echo time MRI of pulmonary airways and airspaces for modelling the morphometry and biomechanical properties of pulmonary parenchyma and airways
吸入气体和肺气道和空腔的超短/零回波时间 MRI,用于模拟肺实质和气道的形态测量和生物力学特性
  • 批准号:
    RGPIN-2016-04760
  • 财政年份:
    2021
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Discovery Grants Program - Individual
The 3D digital transformation from drilling debris "cuttings" to core sample: evaluation of rock physical properties in the ultra-deep subseafloor environments
从钻屑“钻屑”到岩芯样本的 3D 数字化转换:超深海底环境中岩石物理性质的评估
  • 批准号:
    21K18751
  • 财政年份:
    2021
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Challenge to Ultra-efficient and Accurate Evaluation of Infiltration and Strength Properties of Unsaturated Soil Using Continuous Pressurized method
连续加压法超高效准确评价非饱和土渗透和强度特性的挑战
  • 批准号:
    21K18752
  • 财政年份:
    2021
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了