BRAIN EAGER: Going All Wireless to Establish Bats as The First Mammalian Model System for Vocal Learning

BRAIN EAGER:采用全无线技术将蝙蝠建立为第一个用于声音学习的哺乳动物模型系统

基本信息

  • 批准号:
    1550818
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

The ability to learn a language is a core feature of humanity. Yet, the detailed mammalian brain mechanisms that subserve this complex learning process are poorly understood. The reason for this major gap of knowledge stems from a surprising fact: The vast majority of mammals, including non-human primates and all standard mammalian laboratory animal models, do not learn their language, that is, their vocalizations are innate. Hence, the mammalian neural circuits that support language learning have remained largely obscure. The goal of this proposal is to take the most direct approach towards bridging this gap and establish the bat as the first mammalian model system for studying the detailed brain mechanisms subserving vocal learning. To achieve this goal, all wireless behavioral and neural monitoring technology will be developed and implemented to track and analyze vocal and neural signals of bats in natural settings. In addition to the development of new neurotechnologies and establishment of a new model system, the project supports opportunities for students from diverse backgrounds to engage in research and for public science education. Language learning is a social learning process that occurs under natural conditions and its investigation requires approaches that preserve such settings. To satisfy this requirement, the project aims to develop an all-wireless experimental approach that alleviates many of the physical constraints that are imposed by standard tethered systems. The proposed approach combines novel methods for monitoring and measurement both the animal's behavior, as well as neural activity in relevant brain circuits on a broad range of timescales ranging from milliseconds to months. Taking this approach, the project aims to lay the groundwork for enabling a detailed description of the underlying neuronal dynamics that support vocal learning in the juvenile bat and thereby establish the bat as a mammalian model for investigation of the neurobiology of vocal learning. Considering the profound influence language has over our daily lives, the technologies developed and discoveries made in this research program will be of major interest to both the broad neuroscience community as well as to the general public.
学习语言的能力是人类的核心特征。然而,对哺乳动物大脑中支持这一复杂学习过程的详细机制却知之甚少。造成这一重大知识差距的原因来自一个令人惊讶的事实:绝大多数哺乳动物,包括非人类灵长类动物和所有标准的哺乳动物实验室动物模型,都不学习它们的语言,也就是说,它们的发声是天生的。因此,支持语言学习的哺乳动物神经回路在很大程度上仍然不清楚。这项建议的目标是采取最直接的方法弥合这一差距,并建立蝙蝠作为第一个哺乳动物模型系统,研究详细的大脑机制subserving声乐学习。 为了实现这一目标,将开发和实施所有无线行为和神经监测技术,以跟踪和分析蝙蝠在自然环境中的声音和神经信号。除了开发新的神经技术和建立新的模型系统外,该项目还为来自不同背景的学生提供参与研究和公共科学教育的机会。语言学习是在自然条件下发生的社会学习过程,其研究需要保护这种环境的方法。为了满足这一要求,该项目旨在开发一种全无线实验方法,该方法消除了标准系留系统所施加的许多物理约束。所提出的方法结合了新的方法来监测和测量动物的行为,以及相关脑回路中的神经活动,时间范围从毫秒到数月不等。 采取这种方法,该项目的目的是奠定基础,使详细描述的基础神经元动力学,支持在少年蝙蝠的声音学习,从而建立蝙蝠作为哺乳动物模型的声音学习的神经生物学的调查。 考虑到语言对我们日常生活的深远影响,这项研究计划中开发的技术和发现将引起广泛的神经科学界和公众的极大兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Yartsev其他文献

Michael Yartsev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
  • 批准号:
    2348836
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Accelerating decarbonization by representing catalysts with natural language
EAGER:通过用自然语言表示催化剂来加速脱碳
  • 批准号:
    2345734
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了