CAREER: Multiscale stochastic processes, Monte Carlo Methods and Irreversibility
职业:多尺度随机过程、蒙特卡罗方法和不可逆性
基本信息
- 批准号:1550918
- 负责人:
- 金额:$ 48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the challenges facing today applied mathematics and probability is to obtain accurate and provably efficient methods to approximate and simulate a range of complex systems using probabilistic models. Probabilistic models are commonly used to represent physical, biological and financial phenomena that are often however too complex to solve, approximate or even simulate. The primary purpose of this research is to rigorously investigate problems related to multiscale systems, rare events and related Monte Carlo simulation methods. We are interested in studying stochastic dynamical systems that may have different time scales and understudying and quantifying related events that may be rare in a given time scale, but can have important consequences for the system itself. Exact solutions are typically impossible, so one has to rely on simulation and for this reason rigorous development of provably-efficient approximation methods and simulation Monte Carlo methods is in the core of our analysis. The problems of interest in this project are motivated both by fundamental mathematical questions and by a broad array of questions in other branches of science. Examples range from estimation of rare event probabilities in chemical physics, genetic switch models in biology, tracking loop problems in engineering to network failure and large portfolio losses in complex financial systems, where multiscale features and rare events are core issues. In addition, the research project is integrated with an educational program that is designed to help in the training of undergraduate and graduate students in applied mathematics, physics, engineering and chemistry in the exploration of rare events, multiscale processes and their analysis, calibration and simulation.This research project leads to the development of a rigorous mathematical framework that allows to design provably efficient algorithms associated to modeling and estimation of rare events as well as statistical calibration methods. We are interested in both the large deviations regime (tail or rare events) as well as in the moderate deviations regime (the gap between the typical center and the tail of the distribution). We develop provably-efficient Monte Carlo methods such as importance sampling and statistical calibration methods. In a closely related direction we rigorously investigate the consequences of violation of time-reversibility in the design of Monte Carlo methods such as steady state simulation and algorithms for acceleration of convergence to equilibrium. The research project attempts to crystallize concepts and methods that are not well understood such as the effect of metastability on Monte Carlo methods and of multiple scales on large and moderate deviations, on Monte Carlo methods and on statistical estimation methods. The goal is to provide a useful and reliable methodology for simulation and statistical procedures for complex stochastic multiscale dynamical systems that can be used by a wide collection of disciplines and also open frontiers for research. Metastability behavior and multiscale phenomena are of central interest.
当今应用数学和概率论面临的挑战之一是如何利用概率模型获得精确且可证明有效的方法来近似和模拟一系列复杂系统。概率模型通常用于表示物理、生物和金融现象,然而这些现象往往太复杂而无法解决、近似甚至模拟。本研究的主要目的是对多尺度系统、罕见事件及相关的蒙特卡罗模拟方法进行严谨的研究。我们感兴趣的是研究可能具有不同时间尺度的随机动力系统,并对相关事件进行研究和量化,这些事件在给定的时间尺度内可能是罕见的,但可能对系统本身产生重要影响。精确的解通常是不可能的,因此必须依靠模拟,因此严格开发可证明有效的近似方法和模拟蒙特卡罗方法是我们分析的核心。本项目中感兴趣的问题是由基础数学问题和其他科学分支中的广泛问题引起的。例子包括化学物理中罕见事件概率的估计,生物学中的遗传开关模型,工程中的跟踪回路问题,复杂金融系统中的网络故障和大型投资组合损失,其中多尺度特征和罕见事件是核心问题。此外,该研究项目还与一个教育计划相结合,旨在帮助培养应用数学、物理、工程和化学领域的本科生和研究生,帮助他们探索罕见事件、多尺度过程及其分析、校准和模拟。这个研究项目导致了一个严格的数学框架的发展,允许设计与罕见事件建模和估计以及统计校准方法相关的可证明的有效算法。我们既对大偏差区(尾部或罕见事件)感兴趣,也对中等偏差区(典型中心和分布尾部之间的间隙)感兴趣。我们开发了可证明高效的蒙特卡罗方法,如重要抽样和统计校准方法。在一个密切相关的方向,我们严格研究违反时间可逆性的后果在蒙特卡罗方法的设计,如稳态模拟和算法加速收敛到平衡。该研究项目试图使尚未得到很好理解的概念和方法结晶化,例如亚稳态对蒙特卡罗方法的影响以及对大偏差和中等偏差的多重尺度的影响,对蒙特卡罗方法的影响以及对统计估计方法的影响。目标是为复杂随机多尺度动力系统的模拟和统计程序提供一种有用和可靠的方法,可以被广泛的学科集合使用,也为研究开辟了前沿。亚稳态行为和多尺度现象是中心兴趣。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mean Field Limits of Particle-Based Stochastic Reaction-Diffusion Models
基于粒子的随机反应扩散模型的平均场极限
- DOI:10.1137/20m1365600
- 发表时间:2022
- 期刊:
- 影响因子:2
- 作者:Isaacson, Samuel A.;Ma, Jingwei;Spiliopoulos, Konstantinos
- 通讯作者:Spiliopoulos, Konstantinos
Moderate deviations for systems of slow–fast stochastic reaction–diffusion equations
- DOI:10.1007/s40072-022-00236-y
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Ioannis Gasteratos;M. Salins;K. Spiliopoulos
- 通讯作者:Ioannis Gasteratos;M. Salins;K. Spiliopoulos
Online Adjoint Methods for Optimization of PDEs
偏微分方程优化的在线伴随方法
- DOI:10.1007/s00245-022-09852-5
- 发表时间:2022
- 期刊:
- 影响因子:1.8
- 作者:Sirignano, Justin;Spiliopoulos, Konstantinos
- 通讯作者:Spiliopoulos, Konstantinos
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Konstantinos Spiliopoulos其他文献
Large Deviations Principle for a Large Class of One-Dimensional Markov Processes
- DOI:
10.1007/s10959-011-0345-8 - 发表时间:
2011-02-10 - 期刊:
- 影响因子:0.600
- 作者:
Konstantinos Spiliopoulos - 通讯作者:
Konstantinos Spiliopoulos
Mean field limits of particle-based stochastic reaction-drift-diffusion models
基于粒子的随机反应-漂移-扩散模型的平均场极限
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
M. Heldman;S. Isaacson;Qianhan Liu;Konstantinos Spiliopoulos - 通讯作者:
Konstantinos Spiliopoulos
Rare event simulation via importance sampling for linear SPDE’s
- DOI:
10.1007/s40072-017-0100-y - 发表时间:
2017-05-22 - 期刊:
- 影响因子:1.400
- 作者:
Michael Salins;Konstantinos Spiliopoulos - 通讯作者:
Konstantinos Spiliopoulos
Periocular facial scald burns in children: is ophthalmology consultation necessary?
- DOI:
10.1016/j.jaapos.2018.07.120 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:
- 作者:
Konstantinos Spiliopoulos;Carson E. Clay;Omar Z. Ahmed;Jonathan Taylormoore;Bethany Karwoski;Randall S. Burd - 通讯作者:
Randall S. Burd
Stochastic gradient descent-based inference for dynamic network models with attractors
基于随机梯度下降的吸引子动态网络模型推理
- DOI:
10.48550/arxiv.2403.07124 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hancong Pan;Xiaojing Zhu;Cantay Caliskan;Dino P. Christenson;Konstantinos Spiliopoulos;Dylan Walker;E. Kolaczyk - 通讯作者:
E. Kolaczyk
Konstantinos Spiliopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Konstantinos Spiliopoulos', 18)}}的其他基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
2311500 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Multiscale Effects and Tail Events for Infinite-Dimensional Processes and Interacting Particle Systems
无限维过程和相互作用粒子系统的多尺度效应和尾部事件
- 批准号:
2107856 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Monte Carlo Methods, Metastability and Stochastic Processes with Multiple Scales
蒙特卡罗方法、亚稳态和多尺度随机过程
- 批准号:
1312124 - 财政年份:2013
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
- 批准号:
2338221 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
Performance design based on stochastic process simulation of multiscale internal structure in concrete
基于混凝土多尺度内部结构随机过程模拟的性能设计
- 批准号:
21K04211 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Diversity and Universality of Multiscale Earthquake Processes and Stochastic Modeling
多尺度地震过程的多样性和普遍性与随机模拟
- 批准号:
20K14576 - 财政年份:2020
- 资助金额:
$ 48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Multiscale Analysis of Infinite-Dimensional Stochastic Systems
无限维随机系统的多尺度分析
- 批准号:
1954299 - 财政年份:2020
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Asymptotic analysis of multiscale Lévy-driven stochastic Cucker-Smale and non-linear friction models
多尺度 Lévy 驱动的随机 Cucker-Smale 和非线性摩擦模型的渐近分析
- 批准号:
418509727 - 财政年份:2018
- 资助金额:
$ 48万 - 项目类别:
Research Grants
NSFGEO-NERC: Multiscale Stochastic Modeling and Analysis of the Ocean Circulation
NSFGEO-NERC:海洋环流的多尺度随机建模与分析
- 批准号:
NE/R011567/1 - 财政年份:2018
- 资助金额:
$ 48万 - 项目类别:
Research Grant
Stochastic Constitutive Laws in Nonlinear Mechanics: Application to the Multiscale Modeling of Arterial Walls for Robust Vascular Grafting
非线性力学中的随机本构定律:在稳健血管移植的动脉壁多尺度建模中的应用
- 批准号:
1726403 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
NSFGEO-NERC: Multiscale Stochastic Modeling and Analysis of the Ocean Circulation
NSFGEO-NERC:海洋环流的多尺度随机建模与分析
- 批准号:
1658357 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Stochastic homogenization for uncertainty quantification in multiscale analysis
多尺度分析中不确定性量化的随机均质化
- 批准号:
16KT0129 - 财政年份:2016
- 资助金额:
$ 48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of a novel method for strength estimation of heterogeneous materials by multiscale stochastic stress analysis
建立多尺度随机应力分析异质材料强度估算新方法
- 批准号:
16K05995 - 财政年份:2016
- 资助金额:
$ 48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)