EAGER: Neural dust stimulation for closed loop neuromodulation

EAGER:用于闭环神经调节的神经粉尘刺激

基本信息

  • 批准号:
    1551239
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-15 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

Proposal No:1551239, EAGER-Neural dust stimulation for closed loop neuromodulationOne of the most important challenges that remains in neuroengineering is the development and demonstration of a clinically viable neural interface which can both record from and stimulate many individual neurons and lasts a lifetime. These chronic or long-term neural interfaces are of increasing interest for both central (CNS) and peripheral nervous system (PNS) interventions. Creating lasting, durable, untethered interfaces raises a variety of issues, ranging from the nature of the physical substrate (avoiding the biotic and abiotic effects that presumably lead to performance degradation at the electrode-tissue interface, the density and spatial coverage of the sensing sites), the type of signals measured, and the computation and communication capabilities (how much signal processing on-chip data to transmit wirelessly) under the power budget of the whole system. This proposal seeks to extend our recently published Neural Dust platform to allow for stimulation of nerves via neural dust motes. We believe this to be an aggressive vision which would open the door to a vast array of interventions, including untethered neural recording of human nerves and neurons, untethered stimulation of these processes and record-and-stimulate closed loop systems. Such a vision will require a number of fundamental technological innovations that will have impact across domains including basic neuroscience, clinical interventions of neurological disorders, and prosthetics. For example, the ability to precisely monitor and modulate peripheral nerve activity with a minimally invasive medical device would enable a wide-range of therapeutic opportunities. This closed-loop neuromodulation cannot be done with existing technologies because they suffer from one of two major drawbacks: lack of spatial resolution or high degree of invasiveness. We recently proposed an ultra-miniature as well as extremely compliant system that could enable massive scaling in the number of recordings from the brain or the peripheral nervous system, providing a path towards truly chronic BMI. At the core of this vision is a platform for powering, receiving and transmitting information from inside a peripheral nerve to outside the body using aggressive, state-of-the-art circuit design and the recent demonstration of ultrasonic, piezocrystal "neural dust? motes. The work envisioned in this proposal will leverage recent application specific integrated circuit (ASIC) technology to build stimulating motes that can address individual neurons (or peripheral fibers) and will demonstrate untethered stimulation of nerve fibers, paving the way to closed-loop record-and-stim technology using neural dust. This is a very aggressive, high risk direction which leverages existing neural dust developments with a very high potential payoff (as it enables untethered closed-loop neuromodulation systems). Our long term vision is a system capable of recording and stimulation in closed-loop.
神经粉尘刺激用于闭环神经调节神经工程中仍然存在的最重要的挑战之一是开发和演示临床可行的神经接口,它既可以记录和刺激许多单个神经元,又可以持续一生。这些慢性或长期的神经界面对中枢(CNS)和外周神经系统(PNS)的干预越来越感兴趣。创建持久的、耐用的、不受束缚的接口提出了各种各样的问题,包括物理基底的性质(避免可能导致电极-组织界面性能下降的生物和非生物效应,传感站点的密度和空间覆盖范围),测量信号的类型,以及计算和通信能力(在整个系统的功率预算下,芯片上的信号处理数据要无线传输多少)。该提案旨在扩展我们最近发表的神经尘埃平台,允许通过神经尘埃颗粒刺激神经。我们相信这是一个积极的愿景,它将为大量的干预打开大门,包括对人类神经和神经元的非束缚神经记录,对这些过程的非束缚刺激以及记录和刺激闭环系统。这样的愿景将需要许多基础技术创新,这些创新将对包括基础神经科学、神经疾病的临床干预和假肢在内的各个领域产生影响。例如,使用微创医疗设备精确监测和调节周围神经活动的能力将带来广泛的治疗机会。这种闭环神经调节不能用现有技术完成,因为它们有两个主要缺点之一:缺乏空间分辨率或高度侵入性。我们最近提出了一种超小型的、非常灵活的系统,它可以大规模地扩展大脑或周围神经系统的记录数量,为真正的慢性BMI提供了一条途径。这一愿景的核心是一个平台,通过先进的电路设计和最近的超声波、压电晶体“神经尘埃”演示,为周围神经内部提供动力、接收和传输信息。微粒。该提案中设想的工作将利用最新的应用专用集成电路(ASIC)技术来构建可以处理单个神经元(或外周纤维)的刺激模,并将展示对神经纤维的不受束缚的刺激,为使用神经尘埃的闭环记录和刺激技术铺平道路。这是一个非常激进,高风险的方向,利用现有的神经尘埃开发具有非常高的潜在回报(因为它可以实现不受约束的闭环神经调节系统)。我们的长期愿景是一个能够闭环记录和刺激的系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michel Maharbiz其他文献

Michel Maharbiz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michel Maharbiz', 18)}}的其他基金

UNS:Parylene-in-Parylene (PiP) integrated photonic systems for optogenetics in microelectrocorticography (uECoG)
UNS:用于微皮层电图学 (uECoG) 中光遗传学的聚对二甲苯 (PiP) 集成光子系统
  • 批准号:
    1512794
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EFRI BioFlex: Flexible Resorbable Organic and Nanomaterial Therapeutic Systems (FRONTS)
EFRI BioFlex:灵活的可吸收有机和纳米材料治疗系统 (FRONTS)
  • 批准号:
    1240380
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Integrated Microsystems for Synthetic Biology
职业:合成生物学集成微系统
  • 批准号:
    0846618
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Pre-motor neural circuits enable versatile and sequential limb movements
前运动神经回路可实现多功能且连续的肢体运动
  • 批准号:
    10721086
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
The impact of a neonicotinoid pesticide on neural functions underlying learning and memory
新烟碱类农药对学习和记忆神经功能的影响
  • 批准号:
    10646631
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
A Neural Control Circuit for Coughing
咳嗽的神经控制电路
  • 批准号:
    10678004
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Optical neural motes to enable high density recording through intact dura in a nonhuman primate
光学神经微粒可通过非人类灵长类动物的完整硬脑膜进行高密度记录
  • 批准号:
    10516965
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
High-resolution synaptic and functional connectivity mapping of a neural circuit architecture underlying a behavioral sequence
行为序列背后的神经回路架构的高分辨率突触和功能连接映射
  • 批准号:
    10208363
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
World Trade Center Dust Derived Oxidative Stress at the Nasal-Neural Interface
世贸中心灰尘导致鼻神经界面氧化应激
  • 批准号:
    9055553
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
World Trade Center Dust Derived Oxidative Stress at the Nasal-Neural Interface
世贸中心灰尘导致鼻神经界面氧化应激
  • 批准号:
    8909568
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
Project 3 - Postnantal Development of Airway Neural Control
项目 3 - 产后气道神经控制的发展
  • 批准号:
    7616762
  • 财政年份:
  • 资助金额:
    $ 30万
  • 项目类别:
Project 3 - Postnantal Development of Airway Neural Control
项目 3 - 产后气道神经控制的发展
  • 批准号:
    7822866
  • 财政年份:
  • 资助金额:
    $ 30万
  • 项目类别:
Project 3 - Postnantal Development of Airway Neural Control
项目 3 - 产后气道神经控制的发展
  • 批准号:
    7422372
  • 财政年份:
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了